These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3971674)

  • 41. HAEMODYNAMICS AND OXYGEN CONSUMPTION OF THE KIDNEY IN POST-ISCHAEMIC RENAL FAILURE.
    BALINT P; CHATEL R; FEKETE A; FORGACS I
    Clin Sci; 1964 Jun; 26():471-7. PubMed ID: 14191275
    [No Abstract]   [Full Text] [Related]  

  • 42. Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements.
    Schoenberg SO; Knopp MV; Bock M; Kallinowski F; Just A; Essig M; Hawighorst H; Schad L; van Kaick G
    Radiology; 1997 Apr; 203(1):45-53. PubMed ID: 9122415
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The use of duplex sonography in the diagnosis of renal artery stenosis.
    Riehl J; Fritz A; Sieberth HG
    Eur J Med Res; 1997 Jan; 2(1):14-22. PubMed ID: 9049589
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Renal artery stenosis: in vivo perfusion MR imaging.
    Powers TA; Lorenz CH; Holburn GE; Price RR
    Radiology; 1991 Feb; 178(2):543-8. PubMed ID: 1987621
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Medical considerations in the evaluation of the obstructed renal artery.
    Henrich WL
    Am J Med Sci; 1990 Jul; 300(1):53-8. PubMed ID: 2196795
    [No Abstract]   [Full Text] [Related]  

  • 46. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling.
    Kagadis GC; Skouras ED; Bourantas GC; Paraskeva CA; Katsanos K; Karnabatidis D; Nikiforidis GC
    Med Eng Phys; 2008 Jun; 30(5):647-60. PubMed ID: 17714975
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [CT angiography hemodynamically relevant to renal artery stenosis. Evaluation of AXIAL, MPR, MIP and SSD reconstruction procedures under standard investigation conditions].
    Wilhelm K; Wilsmann-Theis D; Sommer T; Leutner C; Textor J; Schild H
    Rofo; 2000 Feb; 172(2):161-7. PubMed ID: 10723490
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Hemodynamics during catheter-measurement of pressure difference in experiment].
    Beránek I
    Z Exp Chir; 1971; 4(1):37-45. PubMed ID: 5162939
    [No Abstract]   [Full Text] [Related]  

  • 49. Effect of angiotensin converting enzyme inhibition on the Doppler waveform in dogs with renal artery stenosis.
    Gottlieb RH; Zusman E; Hartley DF; Rubens DJ; Voci SL; Robinette W; Melendez L; Morris TW; Ojha S; Chengazi V; Erturk E; Messing EM
    J Ultrasound Med; 1999 Jul; 18(7):481-7. PubMed ID: 10400051
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of intrarenal hemodynamic changes following acute arterial occlusion.
    Hinshaw LB; Page BB; Brake CM; Emerson TE
    Am J Physiol; 1963 Nov; 205(5):1033-41. PubMed ID: 4291059
    [No Abstract]   [Full Text] [Related]  

  • 51. Quantification of renal perfusion abnormalities using an intravascular contrast agent (part 2): results in animals and humans with renal artery stenosis.
    Schoenberg SO; Aumann S; Just A; Bock M; Knopp MV; Johansson LO; Ahlstrom H
    Magn Reson Med; 2003 Feb; 49(2):288-98. PubMed ID: 12541249
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Angiotensin-converting enzyme inhibitor renography. Physiopathological, diagnostic and therapeutic aspects in renal artery stenosis].
    Pedersen EB
    Ugeskr Laeger; 1994 Feb; 156(7):948-54, 957. PubMed ID: 8009737
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Erythropoietin release in hypertensive dogs with renal artery stenosis.
    Murphy GP; Mirand EA; Johnston GS; Schirmer HK
    Surg Forum; 1966; 17():499-500. PubMed ID: 5921026
    [No Abstract]   [Full Text] [Related]  

  • 54. Transplant renal artery stenosis in a canine model: evaluation of hemodynamic changes, renal function, and captopril renography.
    Sankari BR; Stowe NT; Nally JV; Gavin JP; Remzi FH; Novick AC
    J Urol; 1992 Mar; 147(3):723-6. PubMed ID: 1538471
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Violation of Ohm's law in a Weyl metal.
    Shin D; Lee Y; Sasaki M; Jeong YH; Weickert F; Betts JB; Kim HJ; Kim KS; Kim J
    Nat Mater; 2017 Nov; 16(11):1096-1099. PubMed ID: 28805826
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the correct interpretation of the low voltage regime in intrinsic single-carrier devices.
    Röhr JA; Kirchartz T; Nelson J
    J Phys Condens Matter; 2017 May; 29(20):205901. PubMed ID: 28294108
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Body Mass Dynamics Is Determined by the Metabolic Ohm's Law and Adipocyte-Autonomous Fat Mass Homeostasis.
    Wang G
    iScience; 2020 Jun; 23(6):101176. PubMed ID: 32480131
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The importance of renal prostaglandin synthesis in maintaining renal blood flow and glomerular filtration after renal artery stenosis in the conscious dog.
    Nies AS; Rawl J; Cruze J; Oates JA; Frölich JC
    Invest Urol; 1978 Jul; 16(1):72-4. PubMed ID: 689842
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental investigations of the role of hemodynamic factors in formation of intimal changes.
    Gyurkó G; Szabó M
    Surgery; 1969 Nov; 66(5):871-4. PubMed ID: 5348308
    [No Abstract]   [Full Text] [Related]  

  • 60. [Variations in renal artery flow in dogs after arterial ischemia].
    Ferneiny S; Chanzy M; Testas P
    C R Seances Soc Biol Fil; 1972; 166(12):1595-8. PubMed ID: 4665259
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.