These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 3971703)
1. Numerical integration in the reconstruction of cardiac action potentials using Hodgkin-Huxley-type models. Victorri B; Vinet A; Roberge FA; Drouhard JP Comput Biomed Res; 1985 Feb; 18(1):10-23. PubMed ID: 3971703 [TBL] [Abstract][Full Text] [Related]
2. Spiking neural network simulation: numerical integration with the Parker-Sochacki method. Stewart RD; Bair W J Comput Neurosci; 2009 Aug; 27(1):115-33. PubMed ID: 19151930 [TBL] [Abstract][Full Text] [Related]
3. Reconstruction of the electrical activity of cardiac Purkinje fibres. McAllister RE; Noble D; Tsien RW J Physiol; 1975 Sep; 251(1):1-59. PubMed ID: 1185607 [TBL] [Abstract][Full Text] [Related]
4. The relation of Vmax to INa, GNa, and h infinity in a model of the cardiac Purkinje fiber. Walton M; Fozzard HA Biophys J; 1979 Mar; 25(3):407-20. PubMed ID: 262397 [TBL] [Abstract][Full Text] [Related]
6. On numerical integration of the Hodgkin and Huxley equations for a membrane action potential. Moore JW; Ramon F J Theor Biol; 1974 May; 45(1):249-73. PubMed ID: 4836889 [No Abstract] [Full Text] [Related]
8. On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity. Spiteri RJ; Dean RC IEEE Trans Biomed Eng; 2008 May; 55(5):1488-95. PubMed ID: 18440894 [TBL] [Abstract][Full Text] [Related]
9. The voltage dependence of the cardiac membrane conductance. NOBLE D Biophys J; 1962 Sep; 2(5):381-93. PubMed ID: 14480152 [TBL] [Abstract][Full Text] [Related]
10. Comparison of asymptotics of heart and nerve excitability. Suckley R; Biktashev VN Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011902. PubMed ID: 12935171 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms for nonuniform propagation along excitable cables. Rinzel J Ann N Y Acad Sci; 1990; 591():51-61. PubMed ID: 2197933 [TBL] [Abstract][Full Text] [Related]
12. EXPONENTIAL TIME DIFFERENCING FOR HODGKIN-HUXLEY-LIKE ODES. Börgers C; Nectow AR SIAM J Sci Comput; 2013; 35(3):B623-B643. PubMed ID: 24058276 [TBL] [Abstract][Full Text] [Related]
13. The simulation of repolarization events of the cardiac Purkinje fiber action potential. Drouhard JP; Roberge FA IEEE Trans Biomed Eng; 1982 Jul; 29(7):481-93. PubMed ID: 7106803 [No Abstract] [Full Text] [Related]
14. The effect of action potential propagation on a numerical simulation of a cardiac fiber subjected to secondary external stimulus. Barach JP; Wikswo JP Comput Biomed Res; 1991 Oct; 24(5):435-52. PubMed ID: 1660391 [TBL] [Abstract][Full Text] [Related]
15. The isolated rabbit heart and Purkinje fibers as models for identifying proarrhythmic liability. Roche M; Renauleaud C; Ballet V; Doubovetzky M; Guillon JM J Pharmacol Toxicol Methods; 2010; 61(3):238-50. PubMed ID: 20117224 [TBL] [Abstract][Full Text] [Related]
17. A mathematical model of the Purkinje-muscle junctions. Azzouzi A; Coudière Y; Turpault R; Zemzemi N Math Biosci Eng; 2011 Oct; 8(4):915-30. PubMed ID: 21936592 [TBL] [Abstract][Full Text] [Related]
18. New studies of the excitatory sodium currents in heart muscle. Fozzard HA; January CT; Makielski JC Circ Res; 1985 Apr; 56(4):475-85. PubMed ID: 2579746 [TBL] [Abstract][Full Text] [Related]
19. Using Vmax to estimate changes in the sodium membrane conductance in cardiac cells. Roberge FA; Drouhard JP Comput Biomed Res; 1987 Aug; 20(4):351-65. PubMed ID: 3621919 [TBL] [Abstract][Full Text] [Related]