These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 3972034)

  • 21. Positional specificity tests in co-cultures of retinal and tectal explants.
    Smalheiser NR
    Brain Res; 1981 Jun; 213(2):493-9. PubMed ID: 7248774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on the development of the chick optic tectum. IV. An autoradiographic study of the development of retino-tectal connections.
    Crossland WJ; Cowan WM; Rogers LA
    Brain Res; 1975 Jun; 91(1):1-23. PubMed ID: 48407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Formation of functional synaptic connections between heterogeneous brain structures in an organotypic nerve tissue culture].
    Viktorov IV; Sharonova IN
    Neirofiziologiia; 1980; 12(5):490-7. PubMed ID: 7191480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The development of intersegmental connections in embryonic spinal cord: an anatomic substrate for early embryonic motility.
    Singer HS; Skoff RP; Price DL
    Brain Res; 1978 Feb; 141(2):197-209. PubMed ID: 626898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of specific sensory-evoked synaptic networks in fetal mouse cord-brainstem cultures.
    Crain SM; Peterson ER
    Science; 1975 Apr; 188(4185):275-8. PubMed ID: 1118729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the role of Müller glia cells in histogenesis: only retinal spheroids, but not tectal, telencephalic and cerebellar spheroids develop histotypical patterns.
    Willbold E; Berger J; Reinicke M; Wolburg H
    J Hirnforsch; 1997; 38(3):383-96. PubMed ID: 9350510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The distribution of dorsal root axons to laminae IV, V, and VI of the Macaque spinal cord: a quantitative electron microscopic study.
    Ralston HJ; Ralston DD
    J Comp Neurol; 1982 Dec; 212(4):435-48. PubMed ID: 6891705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ectopic adenoviral vector-directed expression of Sema3A in organotypic spinal cord explants inhibits growth of primary sensory afferents.
    Pasterkamp RJ; Giger RJ; Baker RE; Hermens WT; Verhaagen J
    Dev Biol; 2000 Apr; 220(2):129-41. PubMed ID: 10753505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of ganglion cells and their axons in organized cultures of fetal mouse retinal explants.
    Smalheiser NR; Crain SM; Bornstein MB
    Brain Res; 1981 Jan; 204(1):159-78. PubMed ID: 6166351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The generation of neurons involved in an early reflex pathway of embryonic mouse spinal cord.
    Sims TJ; Vaughn JE
    J Comp Neurol; 1979 Feb; 183(4):707-19. PubMed ID: 762268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of growth medium, age in vitro and spontaneous bioelectric activity on the distribution of sensory ganglion-evoked activity in spinal cord explants.
    Baker RE; Habets AM; Brenner E; Corner MA
    Brain Res; 1982 Nov; 281(3):329-41. PubMed ID: 6185184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synaptic transmission between rat superior cervical ganglion neurons in dissociated cell cultures.
    Ko CP; Burton H; Johnson MI; Bunge RP
    Brain Res; 1976 Dec; 117(3):461-85. PubMed ID: 186157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light microscopic and ultrastructural localization of immunoreactive substance P in the dorsal horn of monkey spinal cord.
    DiFiglia M; Aronin N; Leeman SE
    Neuroscience; 1982 May; 7(5):1127-39. PubMed ID: 6180349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrastructural organization of regenerated adult dorsal root axons within transplants of fetal spinal cord.
    Itoh Y; Tessler A
    J Comp Neurol; 1990 Feb; 292(3):396-411. PubMed ID: 1692851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical mapping of neural network activity in chick spinal cord at an intermediate stage of embryonic development.
    Arai Y; Momose-Sato Y; Sato K; Kamino K
    J Neurophysiol; 1999 Apr; 81(4):1889-902. PubMed ID: 10200224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of gangliosides on the development of selective afferent connections within fetal mouse spinal cord explants.
    Baker RE
    Neurosci Lett; 1983 Oct; 41(1-2):81-4. PubMed ID: 6646520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oligodendrocyte-spinal cord explant co-culture: an in vitro model for the study of myelination.
    Chen Z; Ma Z; Wang Y; Li Y; Lü H; Fu S; Hang Q; Lu PH
    Brain Res; 2010 Jan; 1309():9-18. PubMed ID: 19879858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An ultrastructural study of embryonic chick retinal neurons in culture.
    Bird MM
    Cell Tissue Res; 1986; 245(3):563-77. PubMed ID: 3757017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differentiation of dorsal root ganglion cells with processes in their synaptic target zone of embryonic mouse spinal cord: a retrograde tracer study.
    Barber RP; Vaughn JE
    J Neurocytol; 1986 Apr; 15(2):207-18. PubMed ID: 3723148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in immunoreactivity for growth associated protein-43 suggest reorganization of synapses on spinal sympathetic neurons after cord transection.
    Weaver LC; Cassam AK; Krassioukov AV; Llewellyn-Smith IJ
    Neuroscience; 1997 Nov; 81(2):535-51. PubMed ID: 9300440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.