These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3972768)

  • 1. Pyrimidine deoxyribonucleotide metabolism in Acholeplasma laidlawii B-PG9.
    Williams MV; Pollack JD
    J Bacteriol; 1985 Mar; 161(3):1029-33. PubMed ID: 3972768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of deoxyribomononucleotides in Mollicutes: dependence on deoxyribose-1-phosphate and PPi.
    McElwain MC; Pollack JD
    J Bacteriol; 1987 Aug; 169(8):3647-53. PubMed ID: 3038846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of a dUTPase from Acholeplasma laidlawii B-PG9.
    Williams MV; Pollack JD
    J Bacteriol; 1984 Jul; 159(1):278-82. PubMed ID: 6145699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymes of pyrimidine deoxyribonucleotide metabolism in Mycoplasma mycoides subsp. mycoides.
    Neale GA; Mitchell A; Finch LR
    J Bacteriol; 1983 Dec; 156(3):1001-5. PubMed ID: 6139361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acholeplasma laidlawii B-PG9 adenine-specific purine nucleoside phosphorylase that accepts ribose-1-phosphate, deoxyribose-1-phosphate, and xylose-1-phosphate.
    McElwain MC; Williams MV; Pollack JD
    J Bacteriol; 1988 Feb; 170(2):564-7. PubMed ID: 3123458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purine metabolism in Acholeplasma laidlawii B: novel PPi-dependent nucleoside kinase activity.
    Tryon VV; Pollack D
    J Bacteriol; 1984 Jul; 159(1):265-70. PubMed ID: 6330034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PPi-dependent phosphofructotransferase (phosphofructokinase) activity in the mollicutes (mycoplasma) Acholeplasma laidlawii.
    Pollack JD; Williams MV
    J Bacteriol; 1986 Jan; 165(1):53-60. PubMed ID: 3001032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence of monoacyl-diglucosyl-diacyl-glycerol and monoacyl-bis-glycerophosphoryl-diglucosyl-diacyl-glycerol in membranes of Acholeplasma laidlawii strain B-PG9.
    Andersson AS; Rilfors L; Lewis RN; McElhaney RN; Lindblom G
    Biochim Biophys Acta; 1998 Jan; 1389(1):43-9. PubMed ID: 9443602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport properties of membrane vesicles from Acholeplasma laidlawii. I. Isolation and general characteristics.
    Fedotov NS; Panchenko LF; Logachev AP; Bekkouzhin AG; Tarshis MA
    Folia Microbiol (Praha); 1975; 20(6):470-9. PubMed ID: 127739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenylate energy charge in Acholeplasma laidlawii.
    Beaman KD; Pollack JD
    J Bacteriol; 1981 Jun; 146(3):1055-8. PubMed ID: 7240083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathways of pyrimidine deoxyribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides.
    Neale GA; Mitchell A; Finch LR
    J Bacteriol; 1983 Apr; 154(1):17-22. PubMed ID: 6339469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R; Ashihara H
    Planta; 2002 Sep; 215(5):821-8. PubMed ID: 12244448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requirements of Acholeplasma laidlawii A, strain LA 1, for nucleic acid precursors.
    Liska B; Smith PF
    Folia Microbiol (Praha); 1974; 19(2):107-17. PubMed ID: 4471597
    [No Abstract]   [Full Text] [Related]  

  • 14. The anaplerotic phosphoenolpyruvate carboxylase of the tricarboxylic acid cycle deficient Acholeplasma laidlawii B-PG9.
    Manolukas JT; Williams MV; Pollack JD
    J Gen Microbiol; 1989 Feb; 135(Pt 2):251-6. PubMed ID: 2614382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesterol accumulation in plasma membrane and changes of membrane enzyme activity of Acholeplasma laidlawii cells during culture ageing.
    Kapitanov AB; Ivanova VF; Ladygina VG
    Mech Ageing Dev; 1990 Aug; 55(2):161-9. PubMed ID: 2232909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of a phosphatase which hydrolyzes phosphatidic acid, a key intermediate in glucolipid synthesis in Acholeplasma laidlawii A membranes.
    Berg S; Wieslander A
    Biochim Biophys Acta; 1997 Dec; 1330(2):225-32. PubMed ID: 9408176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similar regulatory mechanisms despite differences in membrane lipid composition in Acholeplasma laidlawii strains A-EF22 and B-PG9. A multivariate data analysis.
    Wieslander A; Rilfors L; Dahlqvist A; Jonsson J; Hellberg S; Rännar S; Sjöström M; Lindblom G
    Biochim Biophys Acta; 1994 May; 1191(2):331-42. PubMed ID: 8172919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uridine phosphorylase from Acholeplasma laidlawii: purification and kinetic properties.
    McIvor RS; Wohlhueter RM; Plagemann PG
    J Bacteriol; 1983 Oct; 156(1):198-204. PubMed ID: 6619095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in mollicutes.
    Manolukas JT; Barile MF; Chandler DK; Pollack JD
    J Gen Microbiol; 1988 Mar; 134(3):791-800. PubMed ID: 3141576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-fractured Acholeplasma laidlawii membranes: nature of particles observed.
    Tourtellotte ME; Zupnik JS
    Science; 1973 Jan; 179(4068):84-6. PubMed ID: 4682132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.