These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 3972819)
1. Influence of template primary and secondary structure on the rate and fidelity of DNA synthesis. Hillebrand GG; Beattie KL J Biol Chem; 1985 Mar; 260(5):3116-25. PubMed ID: 3972819 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of stimulation of T7 DNA polymerase by Escherichia coli single-stranded DNA binding protein (SSB). Myers TW; Romano LJ J Biol Chem; 1988 Nov; 263(32):17006-15. PubMed ID: 3053701 [TBL] [Abstract][Full Text] [Related]
3. Misincorporation during DNA synthesis, analyzed by gel electrophoresis. Hillebrand GG; McCluskey AH; Abbott KA; Revich GG; Beattie KL Nucleic Acids Res; 1984 Apr; 12(7):3155-71. PubMed ID: 6326053 [TBL] [Abstract][Full Text] [Related]
4. The influence of a double-stranded hindrance on DNA synthesis performed by DNA polymerase alpha, T4 DNA polymerase, DNA polymerase I (Klenow fragment) and AMV reverse transcriptase. Scamrov AV; Beabealashvilli RS FEBS Lett; 1988 Feb; 228(1):144-8. PubMed ID: 2449362 [TBL] [Abstract][Full Text] [Related]
5. Comparison of HIV-1 and avian myeloblastosis virus reverse transcriptase fidelity on RNA and DNA templates. Yu H; Goodman MF J Biol Chem; 1992 May; 267(15):10888-96. PubMed ID: 1375233 [TBL] [Abstract][Full Text] [Related]
6. Effects of 2-chloro-2'-deoxyadenosine 5'-triphosphate on DNA synthesis in vitro by purified bacterial and viral DNA polymerases. Hentosh P; McCastlain JC; Blakley RL Biochemistry; 1991 Jan; 30(2):547-54. PubMed ID: 1703019 [TBL] [Abstract][Full Text] [Related]
7. Sequence-specific pausing during in vitro DNA replication on double-stranded DNA templates. Bedinger P; Munn M; Alberts BM J Biol Chem; 1989 Oct; 264(28):16880-6. PubMed ID: 2674143 [TBL] [Abstract][Full Text] [Related]
8. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated phi X174 templates by prokaryotic and eukaryotic DNA polymerases. Moore PD; Bose KK; Rabkin SD; Strauss BS Proc Natl Acad Sci U S A; 1981 Jan; 78(1):110-4. PubMed ID: 6165985 [TBL] [Abstract][Full Text] [Related]
9. Dissection of RNA-primed DNA synthesis catalyzed by gene 4 protein and DNA polymerase of bacteriophage T7. Coupling of RNA primer and DNA synthesis. Nakai H; Richardson CC J Biol Chem; 1986 Nov; 261(32):15217-24. PubMed ID: 3533940 [TBL] [Abstract][Full Text] [Related]
10. Persistence of DNA synthesis arrest sites in the presence of T4 DNA polymerase and T4 gene 32, 44, 45 and 62 DNA polymerase accessory proteins. Charette MF; Weaver DT; DePamphilis ML Nucleic Acids Res; 1986 Apr; 14(8):3343-62. PubMed ID: 3517810 [TBL] [Abstract][Full Text] [Related]
11. Characterization of strand displacement synthesis catalyzed by bacteriophage T7 DNA polymerase. Lechner RL; Engler MJ; Richardson CC J Biol Chem; 1983 Sep; 258(18):11174-84. PubMed ID: 6309835 [TBL] [Abstract][Full Text] [Related]
12. The T4 DNA polymerase accessory proteins form an ATP-dependent complex on a primer-template junction. Munn MM; Alberts BM J Biol Chem; 1991 Oct; 266(30):20024-33. PubMed ID: 1939066 [TBL] [Abstract][Full Text] [Related]
13. Base-pairing properties of N4-methoxydeoxycytidine 5'-triphosphate during DNA synthesis on natural templates, catalyzed by DNA polymerase I of Escherichia coli. Reeves ST; Beattie KL Biochemistry; 1985 Apr; 24(9):2262-8. PubMed ID: 3888268 [TBL] [Abstract][Full Text] [Related]
14. Model RNA-directed DNA synthesis by avian myeloblastosis virus DNA polymerase and its associated RNase H. Watson KF; Schendel PL; Rosok MJ; Ramsey LR Biochemistry; 1979 Jul; 18(15):3210-9. PubMed ID: 88956 [TBL] [Abstract][Full Text] [Related]
15. Structural and enzymatic studies of the T4 DNA replication system. II. ATPase properties of the polymerase accessory protein complex. Jarvis TC; Paul LS; Hockensmith JW; von Hippel PH J Biol Chem; 1989 Jul; 264(21):12717-29. PubMed ID: 2526128 [TBL] [Abstract][Full Text] [Related]
16. Requirements for synthesis of ribonucleic acid primers during lagging strand synthesis by the DNA polymerase and gene 4 protein of bacteriophage T7. Romano LJ; Richardson CC J Biol Chem; 1979 Oct; 254(20):10476-82. PubMed ID: 226544 [TBL] [Abstract][Full Text] [Related]
17. Influence of DNA sequence on the nature of mispairing during DNA synthesis. Lai MD; Beattie KL Biochemistry; 1988 Mar; 27(5):1722-8. PubMed ID: 3284588 [TBL] [Abstract][Full Text] [Related]
18. Site specific mutagenesis: insertion of single noncomplementary nucleotides at specified sites by error-directed DNA polymerization. Zakour RA; James EA; Loeb LA Nucleic Acids Res; 1984 Aug; 12(16):6615-28. PubMed ID: 6089123 [TBL] [Abstract][Full Text] [Related]
19. Thymine glycol lesions terminate chain elongation by DNA polymerase I in vitro. Clark JM; Beardsley GP Nucleic Acids Res; 1986 Jan; 14(2):737-49. PubMed ID: 3511447 [TBL] [Abstract][Full Text] [Related]
20. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase. Patel PH; Jacobo-Molina A; Ding J; Tantillo C; Clark AD; Raag R; Nanni RG; Hughes SH; Arnold E Biochemistry; 1995 Apr; 34(16):5351-63. PubMed ID: 7537090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]