These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 3973013)

  • 1. Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart.
    Weiss J; Hiltbrand B
    J Clin Invest; 1985 Feb; 75(2):436-47. PubMed ID: 3973013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic inhibition in the perfused rat heart: evidence for glycolytic requirement for normal sodium homeostasis.
    Dizon J; Burkhoff D; Tauskela J; Whang J; Cannon P; Katz J
    Am J Physiol; 1998 Apr; 274(4):H1082-9. PubMed ID: 9575910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNP-induced dissipation of ATP in anoxic ventricular muscle.
    McDonald TF; MacLeod DP
    J Physiol; 1973 Mar; 229(3):583-99. PubMed ID: 4266423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of iodoacetate and anoxia on phosphate metabolism in isolated perfused rat hearts.
    Takenaka F; Watanabe A
    Arch Int Pharmacodyn Ther; 1976 Jul; 222(1):55-61. PubMed ID: 984971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular K+ loss and anion efflux during myocardial ischemia and metabolic inhibition.
    Weiss JN; Lamp ST; Shine KI
    Am J Physiol; 1989 Apr; 256(4 Pt 2):H1165-75. PubMed ID: 2468298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycolysis is necessary to preserve myocardial Ca2+ homeostasis during beta-adrenergic stimulation.
    Nakamura K; Kusuoka H; Ambrosio G; Becker LC
    Am J Physiol; 1993 Mar; 264(3 Pt 2):H670-8. PubMed ID: 8384419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between intracellular pH and metabolite concentrations during metabolic inhibition in isolated ferret heart.
    Smith GL; Donoso P; Bauer CJ; Eisner DA
    J Physiol; 1993 Dec; 472():11-22. PubMed ID: 8145137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolytic buffering affects cardiac bioenergetic signaling and contractile reserve similar to creatine kinase.
    Harrison GJ; van Wijhe MH; de Groot B; Dijk FJ; Gustafson LA; van Beek JH
    Am J Physiol Heart Circ Physiol; 2003 Aug; 285(2):H883-90. PubMed ID: 12714331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consequences of metabolic inhibition in smooth muscle isolated from guinea-pig stomach.
    Nakayama S; Chihara S; Clark JF; Huang SM; Horiuchi T; Tomita T
    J Physiol; 1997 Nov; 505 ( Pt 1)(Pt 1):229-40. PubMed ID: 9409485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the responses of fetal and adult cardiac muscle to hypoxia.
    Su JY; Friedman WF
    Am J Physiol; 1973 Jun; 224(6):1249-53. PubMed ID: 4712135
    [No Abstract]   [Full Text] [Related]  

  • 11. The vein utilizes different sources of energy than the artery during pulmonary hypoxic vasoconstriction.
    Zhao Y; Packer CS; Rhoades RA
    Exp Lung Res; 1996; 22(1):51-63. PubMed ID: 8838135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A crucial role of ongoing anaerobic glycolysis in attenuating acute ischemia-induced release of myocardial noradrenaline.
    Carlsson L
    J Mol Cell Cardiol; 1988 Mar; 20(3):247-53. PubMed ID: 3398056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hypoxia on myocardial high-energy phosphates in the neonatal mammalian heart.
    Jarmakani JM; Nagatomo T; Nakazawa M; Langer GA
    Am J Physiol; 1978 Nov; 235(5):H475-81. PubMed ID: 727269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of metabolic inhibition on uterine metabolism and intracellular pH in the rat.
    Wray S
    J Physiol; 1990 Apr; 423():411-23. PubMed ID: 2388156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between coronary flow and high energy phosphates in the isolated perfused rat heart, with special reference to the effects of anoxia, iodoacetic acid, and 2,4-dinitrophenol.
    Shibano T; Abiko Y
    Methods Find Exp Clin Pharmacol; 1989 Sep; 11(9):567-75. PubMed ID: 2586203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential contribution of mitochondria, NADPH oxidases, and glycolysis to region-specific oxidant stress in the anoxic-reoxygenated embryonic heart.
    Raddatz E; Thomas AC; Sarre A; Benathan M
    Am J Physiol Heart Circ Physiol; 2011 Mar; 300(3):H820-35. PubMed ID: 21193588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of mitochondrial calcium transport in failing heart.
    Dhalla NS; Tomlinson CW; Yates JC; Lee SL; Varley KG; Borowski IF; Barwinsky J
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():177-87. PubMed ID: 52879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of hypothermia and anti-angina preparations with malonate-like action on myocardial glycolysis and oxidative phosphorylation].
    Urakov AL; Ushnurtsev SA; Zamost'ianova GB
    Farmakol Toksikol; 1983; 46(1):51-4. PubMed ID: 6825819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of metabolic inhibition on conduction, Ca transients, and arrhythmia vulnerability in embryonic mouse hearts.
    Chen F; De Diego C; Xie LH; Yang JH; Klitzner TS; Weiss JN
    Am J Physiol Heart Circ Physiol; 2007 Oct; 293(4):H2472-8. PubMed ID: 17660398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of acidosis in early contractile dysfunction during ischemia: evidence from pHo measurements.
    Weiss J; Couper GS; Hiltbrand B; Shine KI
    Am J Physiol; 1984 Nov; 247(5 Pt 2):H760-7. PubMed ID: 6496757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.