These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 3973241)

  • 1. Effects of heat conduction and sample size on ultrasonic absorption measurements.
    Parker KJ
    J Acoust Soc Am; 1985 Feb; 77(2):719-25. PubMed ID: 3973241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature effects in the focal region of acoustic microscope.
    Maev RG; Maslov KI
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):166-71. PubMed ID: 18267571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of thermal diffusivity of biomaterials by focused ultrasonic beams (thermal pulse decay method by focused ultrasonic beams).
    Nakayama M; Tanishita K
    Biomed Mater Eng; 1994; 4(2):105-14. PubMed ID: 7920196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time constants in thermal laser medicine: II. Distributions of time constants and thermal relaxation of tissue.
    van Gemert MJ; Lucassen GW; Welch AJ
    Phys Med Biol; 1996 Aug; 41(8):1381-99. PubMed ID: 8858726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-element ultrasonic hyperthermia applicator with independent element control.
    Underwood HR; Burdette EC; Ocheltree KB; Magin RL
    Int J Hyperthermia; 1987; 3(3):257-67. PubMed ID: 3655439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive estimation of internal temperatures making use of broadband ultrasound radiated by the body.
    Anosov AA; Kazansky AS; Subochev PV; Mansfel'd AD; Klinshov VV
    J Acoust Soc Am; 2015 Apr; 137(4):1667-74. PubMed ID: 25920819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time constants in thermal laser medicine.
    van Gemert MJ; Welch AJ
    Lasers Surg Med; 1989; 9(4):405-21. PubMed ID: 2761336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Acoustic method of determining the temperature of biological tissues during local heating].
    Dmitriev VN; Solontsova LV; Gavrilov LR
    Med Radiol (Mosk); 1987 Jan; 32(1):82-6. PubMed ID: 3807715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of safe thermal therapy levels: the case of ultrasonic waveguide interstitial applicator array.
    Jarosz BJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5025-8. PubMed ID: 17946277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature elevation in focused Gaussian ultrasonic beams at various insonation times.
    FilipczyƄski L; Kujawska T; Wojcik J
    Ultrasound Med Biol; 1993; 19(8):667-79. PubMed ID: 8134971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aperture size to therapeutic volume relation for a multielement ultrasound system: determination of applicator adequacy for superficial hyperthermia.
    Moros EG; Myerson RJ; Straube WL
    Med Phys; 1993; 20(5):1399-409. PubMed ID: 8289722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic attenuation and absorption in liver tissue.
    Parker KJ
    Ultrasound Med Biol; 1983; 9(4):363-9. PubMed ID: 6649154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of thermal property distributions of tissue phantoms from temperature measurements--thermal conductivity, thermal capacity and thermal diffusivity.
    Sumi C; Yanagimura H
    Phys Med Biol; 2007 May; 52(10):2845-63. PubMed ID: 17473355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady state spherically focused, circular aperture beam patterns.
    Goldstein A
    Ultrasound Med Biol; 2006 Oct; 32(10):1441-58. PubMed ID: 17045863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood perfusion and thermal conduction effects in Gaussian beam, minimum time single-pulse thermal therapies.
    Cheng KS; Roemer RB
    Med Phys; 2005 Feb; 32(2):311-7. PubMed ID: 15789574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient temperature rise due to ultrasound absorption at a bone/soft-tissue interface.
    Myers MR
    J Acoust Soc Am; 2004 Jun; 115(6):2887-91. PubMed ID: 15237812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature rise in a tissue-mimicking material generated by unfocused and focused ultrasonic transducers.
    Wu J; Chase JD; Zhu Z; Holzapfel TP
    Ultrasound Med Biol; 1992; 18(5):495-512. PubMed ID: 1509624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional numerical analysis of convection and conduction cooling of spherical biocrystals with localized heating from synchrotron X-ray beams.
    Mhaisekar A; Kazmierczak MJ; Banerjee R
    J Synchrotron Radiat; 2005 May; 12(Pt 3):318-28. PubMed ID: 15840917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of the 3-D electromagnetic power absorption rate in tissue during transurethral prostatic microwave thermotherapy using heat transfer model.
    Zhu L; Xu LX; Chencinski N
    IEEE Trans Biomed Eng; 1998 Sep; 45(9):1163-72. PubMed ID: 9735566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive determination of tissue thermal parameters from high intensity focused ultrasound treatment monitored by volumetric MRI thermometry.
    Dragonu I; de Oliveira PL; Laurent C; Mougenot C; Grenier N; Moonen CT; Quesson B
    NMR Biomed; 2009 Oct; 22(8):843-51. PubMed ID: 19562728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.