These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 3973661)

  • 1. Tonotopic organization in ventral nucleus of medial geniculate body in the cat.
    Imig TJ; Morel A
    J Neurophysiol; 1985 Jan; 53(1):309-40. PubMed ID: 3973661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tonotopic organization in lateral part of posterior group of thalamic nuclei in the cat.
    Imig TJ; Morel A
    J Neurophysiol; 1985 Mar; 53(3):836-51. PubMed ID: 3981239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isofrequency labelling revealed by a combined [14C]-2-deoxyglucose, electrophysiological, and horseradish peroxidase study of the inferior colliculus of the cat.
    Servière J; Webster WR; Calford MB
    J Comp Neurol; 1984 Oct; 228(4):463-77. PubMed ID: 6490965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographic and cytoarchitectonic organization of thalamic neurons related to their targets in low-, middle-, and high-frequency representations in cat auditory cortex.
    Imig TJ; Morel A
    J Comp Neurol; 1984 Aug; 227(4):511-39. PubMed ID: 6470221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional organization of the medial division of the medial geniculate body of the cat: tonotopic organization, spatial distribution of response properties and cortical connections.
    Rouiller EM; Rodrigues-Dagaeff C; Simm G; De Ribaupierre Y; Villa A; De Ribaupierre F
    Hear Res; 1989 May; 39(1-2):127-42. PubMed ID: 2737960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency organization and cellular lamination in the medial geniculate body of the rabbit.
    Cetas JS; Price RO; Velenovsky DS; Sinex DG; McMullen NT
    Hear Res; 2001 May; 155(1-2):113-23. PubMed ID: 11335081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tonotopic organization in the medial geniculate body (MGB) of lightly anesthetized cats.
    Morel A; Rouiller E; de Ribaupierre Y; de Ribaupierre F
    Exp Brain Res; 1987; 69(1):24-42. PubMed ID: 3436391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency organization and responses to complex sounds in the medial geniculate body of the mustached bat.
    Wenstrup JJ
    J Neurophysiol; 1999 Nov; 82(5):2528-44. PubMed ID: 10561424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic functional organization of second auditory cortical field (AII) of the cat.
    Schreiner CE; Cynader MS
    J Neurophysiol; 1984 Jun; 51(6):1284-305. PubMed ID: 6737031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional organization of the ventral division of the medial geniculate body of the cat: evidence for a rostro-caudal gradient of response properties and cortical projections.
    Rodrigues-Dagaeff C; Simm G; De Ribaupierre Y; Villa A; De Ribaupierre F; Rouiller EM
    Hear Res; 1989 May; 39(1-2):103-25. PubMed ID: 2737959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional organization of mustached bat inferior colliculus: I. Representation of FM frequency bands important for target ranging revealed by 14C-2-deoxyglucose autoradiography and single unit mapping.
    O'Neill WE; Frisina RD; Gooler DM
    J Comp Neurol; 1989 Jun; 284(1):60-84. PubMed ID: 2754031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus.
    Calford MB; Aitkin LM
    J Neurosci; 1983 Nov; 3(11):2365-80. PubMed ID: 6313877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographical organization orthogonal to isofrequency contours.
    Middlebrooks JC; Dykes RW; Merzenich MM
    Brain Res; 1980 Jan; 181(1):31-48. PubMed ID: 7350963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional organization of sound direction and sound pressure level in primary auditory cortex of the cat.
    Clarey JC; Barone P; Imig TJ
    J Neurophysiol; 1994 Nov; 72(5):2383-405. PubMed ID: 7884466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional organization of lateral cell groups of cat superior olivary complex.
    Tsuchitani C
    J Neurophysiol; 1977 Mar; 40(2):296-318. PubMed ID: 845625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions.
    Kamke MR; Brown M; Irvine DR
    J Comp Neurol; 2003 May; 459(4):355-67. PubMed ID: 12687704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields.
    Thomas H; Tillein J; Heil P; Scheich H
    Eur J Neurosci; 1993 Jul; 5(7):882-97. PubMed ID: 8281300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of ascending projections to an isofrequency region of the mustache bat's inferior colliculus.
    Ross LS; Pollak GD; Zook JM
    J Comp Neurol; 1988 Apr; 270(4):488-505. PubMed ID: 2836478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representation of sound frequency and laterality by units in central nucleus of cat inferior colliculus.
    Semple MN; Aitkin LM
    J Neurophysiol; 1979 Nov; 42(6):1626-39. PubMed ID: 501392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional subdivisions in the auditory cortex of the guinea pig.
    Redies H; Sieben U; Creutzfeldt OD
    J Comp Neurol; 1989 Apr; 282(4):473-88. PubMed ID: 2723148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.