These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3973682)

  • 1. Input and output changes of an identified neural pathway are correlated with associative learning in Hermissenda.
    Goh Y; Lederhendler I; Alkon DL
    J Neurosci; 1985 Feb; 5(2):536-43. PubMed ID: 3973682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated receptor and motorneuron changes during retention of associative learning of Hermissenda crassicornis.
    Takeda T; Alkon DL
    Comp Biochem Physiol A Comp Physiol; 1982; 73(2):151-7. PubMed ID: 6128102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory, interneuronal, and motor interactions within Hermissenda visual pathway.
    Goh Y; Alkon DL
    J Neurophysiol; 1984 Jul; 52(1):156-69. PubMed ID: 6086855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro associative conditioning of Hermissenda: cumulative depolarization of type B photoreceptors and short-term associative behavioral changes.
    Farley J; Alkon DL
    J Neurophysiol; 1987 Jun; 57(6):1639-68. PubMed ID: 3598626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention of an associative behavioral change in Hermissenda.
    Crow TJ; Alkon DL
    Science; 1978 Sep; 201(4362):1239-41. PubMed ID: 694512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Associative learning changes intrinsic to Hermissenda type A photoreceptors.
    Farley J; Richards WG; Grover LM
    Behav Neurosci; 1990 Feb; 104(1):135-52. PubMed ID: 2156519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Associatively reduced withdrawal from shadows in Hermissenda: a direct behavioral analog of photoreceptor responses to brief light steps.
    Lederhendler II; Alkon DL
    Behav Neural Biol; 1987 May; 47(3):227-49. PubMed ID: 3606526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contingency learning and causal detection in Hermissenda: I. Behavior.
    Farley J
    Behav Neurosci; 1987 Feb; 101(1):13-27. PubMed ID: 3828050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary changes of membrane currents during retention of associative learning.
    Alkon DL; Lederhendler I; Shoukimas JJ
    Science; 1982 Feb; 215(4533):693-5. PubMed ID: 7058334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of associative training in Hermissenda.
    Alkon DL
    J Gen Physiol; 1975 Jan; 65(1):46-56. PubMed ID: 1110353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extinction of associative learning in Hermissenda: behavior and neural correlates.
    Richards WG; Farley J; Alkon DL
    Behav Brain Res; 1984 Dec; 14(3):161-70. PubMed ID: 6525240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of short-term associative memory by calcium-dependent protein kinase.
    Matzel LD; Lederhendler II; Alkon DL
    J Neurosci; 1990 Jul; 10(7):2300-7. PubMed ID: 2376776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane depolarization accumulates during acquisition of an associative behavioral change.
    Alkon DL
    Science; 1980 Dec; 210(4476):1375-6. PubMed ID: 7434034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of presynaptic action potential kinetics underlies synaptic facilitation of type B photoreceptors after associative conditioning in Hermissenda.
    Gandhi CC; Matzel LD
    J Neurosci; 2000 Mar; 20(5):2022-35. PubMed ID: 10684903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis.
    Blackwell KT; Alkon DL
    Brain Res; 1999 Mar; 822(1-2):114-25. PubMed ID: 10082889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Associative learning in a network model of Hermissenda crassicornis. II. Experiments.
    Werness SA; Fay SD; Blackwell KT; Vogl TP; Alkon DL
    Biol Cybern; 1993; 69(1):19-28. PubMed ID: 8334187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral and neural bases of noncoincidence learning in Hermissenda.
    Britton G; Farley J
    J Neurosci; 1999 Oct; 19(20):9126-32. PubMed ID: 10516330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane changes in a single photoreceptor cause associative learning in Hermissenda.
    Farley J; Richards WG; Ling LJ; Liman E; Alkon DL
    Science; 1983 Sep; 221(4616):1201-3. PubMed ID: 6612335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associative learning in a network model of Hermissenda crassicornis. I. Theory.
    Werness SA; Fay SD; Blackwell KT; Vogl TP; Alkon DL
    Biol Cybern; 1992; 68(2):125-33. PubMed ID: 1486137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regenerative changes of voltage-dependent Ca2+ and K+ currents encode a learned stimulus association.
    Alkon DL
    J Physiol (Paris); 1982-1983; 78(8):700-6. PubMed ID: 7187444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.