These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3974325)

  • 1. Adaptable myoelectric prosthetic control with functional visual feedback using microprocessor techniques.
    Philipson L
    Med Biol Eng Comput; 1985 Jan; 23(1):8-14. PubMed ID: 3974325
    [No Abstract]   [Full Text] [Related]  

  • 2. Digital approaches to myoelectric state control of prostheses.
    Philipson L; Childress DS; Strysik J
    Bull Prosthet Res; 1981; 10-36():3-11. PubMed ID: 7344755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory feedback control of upper- and lower-extremity motor prostheses.
    Phillips CA
    Crit Rev Biomed Eng; 1988; 16(2):105-40. PubMed ID: 3053043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of human motion in rehabilitation by micro-computer.
    Ito F
    Nagoya J Med Sci; 1984 Mar; 46(1-4):55-66. PubMed ID: 6738680
    [No Abstract]   [Full Text] [Related]  

  • 5. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant.
    Mastinu E; Doguet P; Botquin Y; Hakansson B; Ortiz-Catalan M
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):867-877. PubMed ID: 28541915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microcomputer-based system for measuring temporal asymmetry in amputee gait.
    Cheung C; Wall JC; Zelin S
    Prosthet Orthot Int; 1983 Dec; 7(3):131-40. PubMed ID: 6647009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Error rate in five-state myoelectric control systems.
    Paciga JE; Richard PD; Scott RN
    Med Biol Eng Comput; 1980 May; 18(3):287-90. PubMed ID: 7421309
    [No Abstract]   [Full Text] [Related]  

  • 10. A microprocessor based control system for multifunctional hand prostheses.
    Johnsson U; Körner L; Herberts P
    Int J Rehabil Res; 1984; 7(2):193-5. PubMed ID: 6490275
    [No Abstract]   [Full Text] [Related]  

  • 11. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A new electromyography measuring and training instrument with automatic data storage for amputees].
    Rossdeutscher W; Boenick U; Matute V
    Biomed Tech (Berl); 1988 May; 33(5):105-9. PubMed ID: 3401551
    [No Abstract]   [Full Text] [Related]  

  • 13. Hybrid force-velocity sliding mode control of a prosthetic hand.
    Engeberg ED; Meek SG; Minor MA
    IEEE Trans Biomed Eng; 2008 May; 55(5):1572-81. PubMed ID: 18440903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multistate myoelectric control: the feasibility of 5-state control.
    Richard PD; Gander RE; Parker PA; Scott RN
    J Rehabil R D; 1983 Jul; 20(1):84-6. PubMed ID: 6887069
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of kinematic vibrotactile feedback on learning to control a virtual prosthetic arm.
    Hasson CJ; Manczurowsky J
    J Neuroeng Rehabil; 2015 Mar; 12():31. PubMed ID: 25879430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees.
    Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H
    J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems.
    Wheeler J; Bark K; Savall J; Cutkosky M
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):58-66. PubMed ID: 20071271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving internal model strength and performance of prosthetic hands using augmented feedback.
    Shehata AW; Engels LF; Controzzi M; Cipriani C; Scheme EJ; Sensinger JW
    J Neuroeng Rehabil; 2018 Jul; 15(1):70. PubMed ID: 30064477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online electromyographic control of a robotic prosthesis.
    Shenoy P; Miller KJ; Crawford B; Rao RN
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1128-35. PubMed ID: 18334405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.