These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3974878)

  • 1. Climbing fiber projection to the turtle cerebellum: longitudinally oriented terminal zones within the basal third of the molecular layer.
    Künzle H
    Neuroscience; 1985 Jan; 14(1):159-68. PubMed ID: 3974878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-uniform projections of granule cells to the cerebellar molecular layer. An autoradiographic tracing study in a turtle.
    Künzle H
    Anat Embryol (Berl); 1987; 175(4):537-44. PubMed ID: 3578830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and distribution of neurons presumed to give rise to cerebellar climbing fibers in turtle. A retrograde axonal flow study using radioactive D-aspartate as a marker.
    Künzle H; Wiklund L
    Brain Res; 1982 Dec; 252(1):146-50. PubMed ID: 7172016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study of cerebellar connections in the turtle using the technic of axonal transport of horseradish peroxidase].
    Belekhova MG; Gaidaenko GV
    Neirofiziologiia; 1985; 17(6):786-94. PubMed ID: 4088383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinocerebellar projections in the turtle. Observations on their origin and terminal organization.
    Künzle H
    Exp Brain Res; 1983; 53(1):129-41. PubMed ID: 6201378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and structural characterization of neurons giving rise to descending spinal projections in the turtle, Pseudemys scripta elegans.
    Woodson W; Künzle H
    J Comp Neurol; 1982 Dec; 212(4):336-48. PubMed ID: 7161413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dorsal root projections to the cerebellum in turtle.
    Künzle H
    Exp Brain Res; 1982; 45(3):464-6. PubMed ID: 7067780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some afferent and efferent connections of the vestibular nuclear complex in the red-eared turtle Pseudemys scripta elegans.
    Bangma GC; Ten Donkelaar HJ
    J Comp Neurol; 1983 Nov; 220(4):453-64. PubMed ID: 6643738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellar corticonuclear projections in the red-eared turtle Pseudemys scripta elegans.
    Bangma GC; ten Donkelaar HJ; Pellegrino A
    J Comp Neurol; 1983 Apr; 215(3):258-74. PubMed ID: 6304155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections.
    Ji Z; Hawkes R
    Neuroscience; 1994 Aug; 61(4):935-54. PubMed ID: 7530818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum.
    Groenewegen HJ; Voogd J; Freedman SL
    J Comp Neurol; 1979 Feb; 183(3):551-601. PubMed ID: 759448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anterograde tracing of the rat olivocerebellar system with Phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei.
    Van der Want JJ; Wiklund L; Guegan M; Ruigrok T; Voogd J
    J Comp Neurol; 1989 Oct; 288(1):1-18. PubMed ID: 2794133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent connections of the cerebellum in various types of reptiles.
    Bangma GC; ten Donkelaar H
    J Comp Neurol; 1982 May; 207(3):255-73. PubMed ID: 7107986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum.
    Ruigrok TJ
    J Comp Neurol; 2003 Nov; 466(2):278-98. PubMed ID: 14528453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of the cerebellum in the pigeon (Columba livia): I. Corticonuclear and corticovestibular connections.
    Arends JJ; Zeigler HP
    J Comp Neurol; 1991 Apr; 306(2):221-44. PubMed ID: 1711053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cerebellar and vestibular nuclear complexes in the turtle. I. Projections to mesencephalon, rhombencephalon, and spinal cord.
    Künzle H
    J Comp Neurol; 1985 Dec; 242(1):102-21. PubMed ID: 4078046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The organization of hypothalamocerebellar cortical fibers in the squirrel monkey (Saimiri sciureus).
    Haines DE; Dietrichs E; Culberson JL; Sowa TE
    J Comp Neurol; 1986 Aug; 250(3):377-88. PubMed ID: 3745521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microzonal projection and climbing fiber remodeling in single olivocerebellar axons of newborn rats at postnatal days 4-7.
    Sugihara I
    J Comp Neurol; 2005 Jun; 487(1):93-106. PubMed ID: 15861456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evidence for climbing fibers in the avian cerebellum.
    Freedman SL; Voogd J; Vielvoye GJ
    J Comp Neurol; 1977 Sep; 175(2):243-52. PubMed ID: 893742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vestibular afferents of the inferior olive and the vestibulo-olivo-cerebellar climbing fiber pathway to the flocculus in the cat.
    Gerrits NM; Voogd J; Magras IN
    Brain Res; 1985 Apr; 332(2):325-36. PubMed ID: 3995273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.