These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 3975042)
1. Measurement of the axial wavefront aberration of the human eye. Walsh G; Charman WN Ophthalmic Physiol Opt; 1985; 5(1):23-31. PubMed ID: 3975042 [TBL] [Abstract][Full Text] [Related]
2. Objective technique for the determination of monochromatic aberrations of the human eye. Walsh G; Charman WN; Howland HC J Opt Soc Am A; 1984 Sep; 1(9):987-92. PubMed ID: 6481506 [TBL] [Abstract][Full Text] [Related]
3. Comparison of optical quality metrics to predict subjective quality of vision after laser in situ keratomileusis. Bühren J; Pesudovs K; Martin T; Strenger A; Yoon G; Kohnen T J Cataract Refract Surg; 2009 May; 35(5):846-55. PubMed ID: 19393883 [TBL] [Abstract][Full Text] [Related]
4. The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating. Walsh G; Charman WN Ophthalmic Physiol Opt; 1989 Oct; 9(4):398-404. PubMed ID: 2631006 [TBL] [Abstract][Full Text] [Related]
5. The optical quality of the monochromatic retinal image as a function of focus. Charman WN; Jennings JA Br J Physiol Opt; 1976; 31(3):119-34. PubMed ID: 1052436 [TBL] [Abstract][Full Text] [Related]
6. Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis. Oshika T; Tokunaga T; Samejima T; Miyata K; Kawana K; Kaji Y Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1334-8. PubMed ID: 16565365 [TBL] [Abstract][Full Text] [Related]
7. Postblink changes in the ocular modulation transfer function measured by a double-pass method. Montés-Micó R; Alió JL; Charman WN Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4468-73. PubMed ID: 16303935 [TBL] [Abstract][Full Text] [Related]
8. Retinal image quality for virtual eyes generated by a statistical model of ocular wavefront aberrations. Thibos LN Ophthalmic Physiol Opt; 2009 May; 29(3):288-91. PubMed ID: 19422560 [TBL] [Abstract][Full Text] [Related]
14. Wavefront aberration of the eye: a review. Charman WN Optom Vis Sci; 1991 Aug; 68(8):574-83. PubMed ID: 1923333 [TBL] [Abstract][Full Text] [Related]
15. Postblink changes in total and corneal ocular aberrations. Montés-Micó R; Alió JL; Muñoz G; Pérez-Santonja JJ; Charman WN Ophthalmology; 2004 Apr; 111(4):758-67. PubMed ID: 15051210 [TBL] [Abstract][Full Text] [Related]
16. A new computerised video-aberroscope for the determination of the aberration of the human eye. Walsh G; Cox MJ Ophthalmic Physiol Opt; 1995 Sep; 15(5):403-8. PubMed ID: 8524565 [TBL] [Abstract][Full Text] [Related]
17. Ocular aberrations in barn owl eyes. Harmening WM; Vobig MA; Walter P; Wagner H Vision Res; 2007 Oct; 47(23):2934-42. PubMed ID: 17845811 [TBL] [Abstract][Full Text] [Related]
18. Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique. Atchison DA; Collins MJ; Wildsoet CF; Christensen J; Waterworth MD Vision Res; 1995 Feb; 35(3):313-23. PubMed ID: 7892727 [TBL] [Abstract][Full Text] [Related]
19. Variation in ocular modulation and phase transfer functions with grating orientation. Walsh G; Charman WN Ophthalmic Physiol Opt; 1992 Jul; 12(3):365-9. PubMed ID: 1454375 [TBL] [Abstract][Full Text] [Related]
20. Optical quality of the eye in subjects with normal and excellent visual acuity. Villegas EA; Alcón E; Artal P Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4688-96. PubMed ID: 18552387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]