BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3976369)

  • 1. The morphology of lipopigment granules in oligodendrocytes of the cerebellum and spinal cord and in Schwann cells of the N. ischiadicus of the cat, Japanese waltzing mouse, and albino mouse.
    Lange W; Schropp A
    Acta Neuropathol; 1985; 65(3-4):330-4. PubMed ID: 3976369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseases axons.
    Spencer PS; Thomas PK
    J Neurocytol; 1974 Dec; 3(6):763-83. PubMed ID: 4218866
    [No Abstract]   [Full Text] [Related]  

  • 3. Kinetic studies on glial, Schwann and capsular cells labelled with [3H] thymidine in cerebrospinal tissue of young mice.
    Kraus-Ruppert R; Laissue J; Bürki H; Odartchenko N
    J Neurol Sci; 1975 Dec; 26(4):555-63. PubMed ID: 1206432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The function of perineuronal satellite oligodendrocytes: an immunohistochemical study.
    Ludwin SK
    Neuropathol Appl Neurobiol; 1984; 10(2):143-9. PubMed ID: 6203046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination.
    Mothe AJ; Tator CH
    Exp Neurol; 2008 Sep; 213(1):176-90. PubMed ID: 18586031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine structure of dividing astroglia and oligodendroglia during myelin formation in the developing mouse spinal cord.
    Meinecke DL; Webster HD
    J Comp Neurol; 1984 Jan; 222(1):47-55. PubMed ID: 6699202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Culture of Neonatal Rodent Microglia, Astrocytes, and Oligodendrocytes from the Cortex, Spinal Cord, and Cerebellum.
    Skaper SD; Facci L
    Methods Mol Biol; 2018; 1727():49-61. PubMed ID: 29222772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized giant axonal neuropathy: a filament-forming disease of neuronal, endothelial, glial, and schwann cells in a patient without kinky hair.
    Peiffer J; Schlote W; Bischoff A; Boltshauser E; Müller G
    Acta Neuropathol; 1977 Nov; 40(3):213-8. PubMed ID: 602684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The central-peripheral transition zone of cervical spinal nerve roots in Jimpy mutant and normal mice. Light- and electron-microscopic study.
    Moll C; Meier C
    Acta Neuropathol; 1983; 60(3-4):241-51. PubMed ID: 6613534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-cell interactions during the migration of myelin-forming cells transplanted in the demyelinated spinal cord.
    Baron-Van Evercooren A; Avellana-Adalid V; Ben Younes-Chennoufi A; Gansmuller A; Nait-Oumesmar B; Vignais L
    Glia; 1996 Feb; 16(2):147-64. PubMed ID: 8929902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some factors influencing the proliferation and differentiation of myelin-forming cells.
    Bunge RP; Bunge MB; Cochran M
    Neurology; 1978 Sep; 28(9 Pt 2):59-67. PubMed ID: 362236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cytology of posttraumatic nerve repair of the spinal cord].
    Ide C; Kitada M; Hayagashi T; Mizoguchi A; Shushoban C
    No To Shinkei; 1998 Mar; 50(3):236-41. PubMed ID: 9565998
    [No Abstract]   [Full Text] [Related]  

  • 13. Development of glial cytoarchitecture in the frog spinal cord.
    Maier CE; Miller RH
    Dev Neurosci; 1995; 17(3):149-59. PubMed ID: 8549426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture.
    Mirsky R; Winter J; Abney ER; Pruss RM; Gavrilovic J; Raff MC
    J Cell Biol; 1980 Mar; 84(3):483-94. PubMed ID: 7358790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Schwann cell and oligodendrocyte remyelination in lysolecithin-induced lesions in irradiated rat spinal cord.
    Harrison B
    J Neurol Sci; 1985 Feb; 67(2):143-59. PubMed ID: 3981217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the control of myelinogenesis. 3. Signalling of oligodendrocyte myelination by regenerating peripheral axons.
    Weinberg EL; Spencer PS
    Brain Res; 1979 Feb; 162(2):273-9. PubMed ID: 761090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system.
    D'Amelio F; Eng LF; Gibbs MA
    Glia; 1990; 3(5):335-41. PubMed ID: 1977699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of transferrin binding protein immunoreactivity in the chicken central and peripheral nervous systems.
    Cho SS; Lucas JJ; Roh EJ; Yoo YB; Lee KH; Park KH; Hwang DH; Baik SH
    J Comp Neurol; 1997 Jun; 382(2):260-71. PubMed ID: 9183693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remyelination during remission in Theiler's virus infection.
    Dal Canto MC; Barbano RL
    Am J Pathol; 1984 Jul; 116(1):30-45. PubMed ID: 6742106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CNS-derived glia ensheath peripheral nerves and mediate motor root development.
    Kucenas S; Takada N; Park HC; Woodruff E; Broadie K; Appel B
    Nat Neurosci; 2008 Feb; 11(2):143-51. PubMed ID: 18176560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.