These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 3976900)

  • 21. A distributed model of bidirectional protein transport during peritoneal fluid absorption.
    Stachowska-Pietka J; Waniewski J; Flessner MF; Lindholm B
    Adv Perit Dial; 2007; 23():23-7. PubMed ID: 17886597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Net fluid absorption under membrane transport models of peritoneal dialysis.
    Vonesh EF; Rippe B
    Blood Purif; 1992; 10(3-4):209-26. PubMed ID: 1308685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of blood perfusion on diffusive transport in peritoneal dialysis.
    Waniewski J; Werynski A; Lindholm B
    Kidney Int; 1999 Aug; 56(2):707-13. PubMed ID: 10432412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A three-pore model of peritoneal transport.
    Rippe B
    Perit Dial Int; 1993; 13 Suppl 2():S35-8. PubMed ID: 8399608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Trans-membrane transport kinetic models in peritoneal dialysis].
    Shan Y; Zhang M; Wang T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):692-4. PubMed ID: 16856418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exchange of macromolecules between plasma and peritoneal cavity in ascites tumor-bearing, normal, and serotonin-injected mice.
    Nagy JA; Herzberg KT; Masse EM; Zientara GP; Dvorak HF
    Cancer Res; 1989 Oct; 49(19):5448-58. PubMed ID: 2475250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of intraperitoneal pressures on tissue water of the abdominal muscle.
    Zakaria ER; Lofthouse J; Flessner MF
    Am J Physiol Renal Physiol; 2000 Jun; 278(6):F875-85. PubMed ID: 10836975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disproportionally low clearance of macromolecules from the plasma to the peritoneal cavity in a mouse model of peritoneal dialysis.
    Rippe A; Rippe C; Swärd K; Rippe B
    Nephrol Dial Transplant; 2007 Jan; 22(1):88-95. PubMed ID: 17050632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distributed model of peritoneal fluid absorption.
    Stachowska-Pietka J; Waniewski J; Flessner MF; Lindholm B
    Am J Physiol Heart Circ Physiol; 2006 Oct; 291(4):H1862-74. PubMed ID: 16714354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Free water transport, small pore transport and the osmotic pressure gradient.
    Parikova A; Smit W; Zweers MM; Struijk DG; Krediet RT
    Nephrol Dial Transplant; 2008 Jul; 23(7):2350-5. PubMed ID: 17984106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of chondroitin sulphate on fluid and solute transport during peritoneal dialysis in rats.
    Breborowicz A; Radkowski M; Knapowski J; Oreopoulos DG
    Perit Dial Int; 1991; 11(4):351-4. PubMed ID: 1751603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyaluronan prevents the decreased net ultrafiltration caused by increased peritoneal dialysate fill volume.
    Wang T; Cheng HH; Heimbürger O; Waniewski J; Bergström J; Lindholm B
    Kidney Int; 1998 Feb; 53(2):496-502. PubMed ID: 9461112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulations of osmotic ultrafiltration failure in CAPD using a serial three-pore membrane/fiber matrix model.
    Rippe B; Venturoli D
    Am J Physiol Renal Physiol; 2007 Mar; 292(3):F1035-43. PubMed ID: 17090782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional characteristics of peritubular capillary membrane in rat kidney.
    Larson M; Nygren K; Sjöquist M; Wolgast M
    Am J Physiol; 1987 Jul; 253(1 Pt 2):F180-7. PubMed ID: 3605347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aquaporin-1 in the peritoneal membrane: Implications for water transport across capillaries and peritoneal dialysis.
    Devuyst O; Ni J
    Biochim Biophys Acta; 2006 Aug; 1758(8):1078-84. PubMed ID: 16581016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mathematical models of fluid and solute transport in peritoneal dialysis.
    Waniewski J
    Pol Merkur Lekarski; 2003 Oct; 15(88):316-8. PubMed ID: 14974356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular weight of polydisperse icodextrin effects its oncotic contribution to water transport.
    Nishimura K; Kamiya Y; Miyamoto K; Nomura S; Horiuchi T
    J Artif Organs; 2008; 11(3):165-9. PubMed ID: 18836880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aquaporin-1 in the peritoneal membrane: implications for peritoneal dialysis and endothelial cell function.
    Devuyst O; Ni J; Verbavatz JM
    Biol Cell; 2005 Sep; 97(9):667-73. PubMed ID: 16104840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo determination of diffusive transport parameters in a superfused tissue.
    Flessner MF; Deverkadra R; Smitherman J; Li X; Credit K
    Am J Physiol Renal Physiol; 2006 Nov; 291(5):F1096-103. PubMed ID: 16684927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of an experimental rat model for peritoneal dialysis: fluid and solute transport characteristics.
    Park MS; Heimbürger O; Bergström J; Waniewski J; Werynski A; Lindholm B
    Nephrol Dial Transplant; 1994; 9(4):404-12. PubMed ID: 8084455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.