BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 3977825)

  • 21. Decreased hepatic fatty acid oxidation at weaning in the rat is not linked to a variation of malonyl-CoA concentration.
    Decaux JF; Ferré P; Robin D; Robin P; Girard J
    J Biol Chem; 1988 Mar; 263(7):3284-9. PubMed ID: 2893801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase.
    Kudo N; Barr AJ; Barr RL; Desai S; Lopaschuk GD
    J Biol Chem; 1995 Jul; 270(29):17513-20. PubMed ID: 7615556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyperthyroidism facilitates cardiac fatty acid oxidation through altered regulation of cardiac carnitine palmitoyltransferase: studies in vivo and with cardiac myocytes.
    Sugden MC; Priestman DA; Orfali KA; Holness MJ
    Horm Metab Res; 1999 May; 31(5):300-6. PubMed ID: 10422724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induction of ketogenesis and fatty acid oxidation by glucagon and cyclic AMP in cultured hepatocytes from rabbit fetuses. Evidence for a decreased sensitivity of carnitine palmitoyltransferase I to malonyl-CoA inhibition after glucagon or cyclic AMP treatment.
    Pégorier JP; Garcia-Garcia MV; Prip-Buus C; Duée PH; Kohl C; Girard J
    Biochem J; 1989 Nov; 264(1):93-100. PubMed ID: 2557835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs.
    Schmidt I; Herpin P
    J Nutr; 1998 May; 128(5):886-93. PubMed ID: 9566999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carnitine acyltransferase activities in rat brain mitochondria. Bimodal distribution, kinetic constants, regulation by malonyl-CoA and developmental pattern.
    Bird MI; Munday LA; Saggerson ED; Clark JB
    Biochem J; 1985 Feb; 226(1):323-30. PubMed ID: 3977877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of malonyl-CoA in the regulation of long-chain fatty acid oxidation in the liver. Evidence for an unidentified regulatory component of the system.
    Ontko JA; Johns ML
    Biochem J; 1980 Dec; 192(3):959-62. PubMed ID: 7236249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carnitine acyltransferase activities in rat liver and heart measured with palmitoyl-CoA and octanoyl-CoA. Latency, effects of K+, bivalent metal ions and malonyl-CoA.
    Saggerson ED
    Biochem J; 1982 Feb; 202(2):397-405. PubMed ID: 7092822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-dependence of inhibition of carnitine palmitoyltransferase I by malonyl-CoA in mitochondria isolated from livers of fed or starved rats. Evidence for transition of the enzyme between states of low and high affinity for malonyl-CoA.
    Zammit VA
    Biochem J; 1984 Mar; 218(2):379-86. PubMed ID: 6712621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of fatty acid oxidation in rat liver homogenates and the inhibitory effect of malonyl-CoA.
    McGarry JD; Mannaerts GP; Foster DW
    Biochim Biophys Acta; 1978 Sep; 530(3):305-13. PubMed ID: 698234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatty acid chain elongation in palmitate-perfused working rat heart: mitochondrial acetyl-CoA is the source of two-carbon units for chain elongation.
    Kerner J; Minkler PE; Lesnefsky EJ; Hoppel CL
    J Biol Chem; 2014 Apr; 289(14):10223-34. PubMed ID: 24558043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of malonyl-CoA on overt and latent carnitine acyltransferase activities in rat liver and adipocyte mitochondria.
    Saggerson ED; Carpenter CA
    Biochem J; 1983 Feb; 210(2):591-7. PubMed ID: 6860313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The oxidation of long-chain unsaturated fatty acids by isolated rat liver mitochondria as a function of substrate concentration.
    Vaartjes WJ; van den Bergh SG
    Biochim Biophys Acta; 1978 Sep; 503(3):437-49. PubMed ID: 150857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle.
    Kim JY; Koves TR; Yu GS; Gulick T; Cortright RN; Dohm GL; Muoio DM
    Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1014-22. PubMed ID: 11934665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstitution of purified, active and malonyl-CoA-sensitive rat liver carnitine palmitoyltransferase I: relationship between membrane environment and malonyl-CoA sensitivity.
    McGarry JD; Brown NF
    Biochem J; 2000 Jul; 349(Pt 1):179-87. PubMed ID: 10861226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased sensitivity of carnitine palmitoyltransferase I activity to malonyl-CoA inhibition after preincubation of intact rat liver mitochondria with micromolar concentrations of malonyl-CoA in vitro.
    Zammit VA
    Biochem J; 1983 Mar; 210(3):953-6. PubMed ID: 6870813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The medium-chain carnitine acyltransferase activity associated with rat liver microsomes is malonyl-CoA sensitive.
    Lilly K; Bugaisky GE; Umeda PK; Bieber LL
    Arch Biochem Biophys; 1990 Jul; 280(1):167-74. PubMed ID: 2353818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of palmitate oxidation in mitochondria by lipid hydroperoxides.
    Imagawa T; Watanabe T; Nakamura T
    J Biochem; 1984 Mar; 95(3):771-8. PubMed ID: 6725234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of hepatic fatty acid oxidation by bezafibrate and bezafibroyl CoA.
    Eacho PI; Foxworthy PS
    Biochem Biophys Res Commun; 1988 Dec; 157(3):1148-53. PubMed ID: 3264699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The relationship between palmitoyl-coenzyme A synthetase activity and esterification of sn-glycerol 3-phosphate in rat liver mitochondria.
    Sánchez M; Nicholls DG; Brindley DN
    Biochem J; 1973 Apr; 132(4):697-706. PubMed ID: 4721605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.