These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 3978099)
1. p-Chloromercuribenzenesulfonic acid stimulation of chloride-dependent sodium and potassium transport in human red blood cells. Haas M; Schmidt WF Biochim Biophys Acta; 1985 Mar; 814(1):43-9. PubMed ID: 3978099 [TBL] [Abstract][Full Text] [Related]
2. Thiol-dependent passive K: Cl transport in sheep red blood cells: IX. Modulation by pH in the presence and absence of DIDS and the effect of NEM. Zade-Oppen AM; Lauf PK J Membr Biol; 1990 Nov; 118(2):143-51. PubMed ID: 2266545 [TBL] [Abstract][Full Text] [Related]
3. In vitro effect of xipamide on sodium-potassium transport systems in human erythrocytes. Lijnen P; Fagard R; Staessen J; Amery A Methods Find Exp Clin Pharmacol; 1988 Aug; 10(8):527-30. PubMed ID: 3226221 [TBL] [Abstract][Full Text] [Related]
4. Cation and anion transport pathways in volume regulatory response of human lymphocytes to hyposmotic media. Sarkadi B; Cheung R; Mack E; Grinstein S; Gelfand EW; Rothstein A Am J Physiol; 1985 May; 248(5 Pt 1):C480-7. PubMed ID: 2581453 [TBL] [Abstract][Full Text] [Related]
5. Alkali metal cation transport through the human erythrocyte membrane by the anion exchange mechanism. Funder J Acta Physiol Scand; 1980 Jan; 108(1):31-7. PubMed ID: 7376905 [TBL] [Abstract][Full Text] [Related]
6. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump. Dissing S; Hoffman JF J Gen Physiol; 1990 Jul; 96(1):167-93. PubMed ID: 2212979 [TBL] [Abstract][Full Text] [Related]
7. Studies on the mechanism of passive cation fluxes activated by deoxygenation of sickle cells. Joiner CH Prog Clin Biol Res; 1987; 240():229-35. PubMed ID: 3615489 [TBL] [Abstract][Full Text] [Related]
8. In vitro effect of cilazaprilat on sodium-potassium transport systems in human erythrocytes. Lijnen P Methods Find Exp Clin Pharmacol; 1990 Mar; 12(2):91-4. PubMed ID: 2319841 [TBL] [Abstract][Full Text] [Related]
9. Activation of a Cl-dependent K flux by cAMP in pig red cells. Kim HD; Sergeant S; Forte LR; Sohn DH; Im JH Am J Physiol; 1989 Apr; 256(4 Pt 1):C772-8. PubMed ID: 2539726 [TBL] [Abstract][Full Text] [Related]
10. Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl-]-cotransport system. Garay RP; Nazaret C; Hannaert PA; Cragoe EJ Mol Pharmacol; 1988 Jun; 33(6):696-701. PubMed ID: 3380083 [TBL] [Abstract][Full Text] [Related]
11. The influence of pH and membrane potential on passive Na+ and K+ fluxes in human red blood cells. Chipperfield AR; Shennan DB Biochim Biophys Acta; 1986 May; 886(3):373-82. PubMed ID: 3011118 [TBL] [Abstract][Full Text] [Related]
12. Effect of membrane potential on K-Cl transport in human erythrocytes. Kaji DM Am J Physiol; 1993 Feb; 264(2 Pt 1):C376-82. PubMed ID: 8447368 [TBL] [Abstract][Full Text] [Related]
13. Role of ABH blood group antigens in the stimulation of a DIDS-sensitive Ca2+ influx pathway in human erythrocytes by Ulex europaeus agglutinin I and a monoclonal anti A1 antibody. Engelmann B; Schumacher U; Duhm J Biochim Biophys Acta; 1991 Feb; 1091(3):261-9. PubMed ID: 2001409 [TBL] [Abstract][Full Text] [Related]
14. Palytoxin induces an increase in the cation conductance of red cells. Tosteson MT; Halperin JA; Kishi Y; Tosteson DC J Gen Physiol; 1991 Nov; 98(5):969-85. PubMed ID: 1684984 [TBL] [Abstract][Full Text] [Related]
15. Chloride-activated passive potassium transport in human erythrocytes. Dunham PB; Stewart GW; Ellory JC Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1711-5. PubMed ID: 6929518 [TBL] [Abstract][Full Text] [Related]
16. Stimulation of K-C1 cotransport in rat red cells by a hemolytic anemia-producing metabolite of dapsone. Haas M; Harrison JH Am J Physiol; 1989 Feb; 256(2 Pt 1):C265-72. PubMed ID: 2919657 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the response of erythrocyte sodium-lithium countertransport to inhibitors. Rutherford PA; Thomas TH; Wilkinson R Biochem Med Metab Biol; 1993 Apr; 49(2):270-3. PubMed ID: 8484966 [TBL] [Abstract][Full Text] [Related]
18. Net efflux of chloride from cell suspensions measured with a K+ electrode. Rothstein A; Mack E Biochim Biophys Acta; 1989 Dec; 987(2):239-42. PubMed ID: 2481504 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin. Jones GS; Knauf PA J Gen Physiol; 1985 Nov; 86(5):721-38. PubMed ID: 4067572 [TBL] [Abstract][Full Text] [Related]
20. Measurement and stoichiometry of bumetanide-sensitive (2Na:1K:3Cl) cotransport in ferret red cells. Hall AC; Ellory JC J Membr Biol; 1985; 85(3):205-13. PubMed ID: 4032458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]