These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 3978110)
1. Fluorescence energy transfer between points in G-actin: the nucleotide-binding site, the metal-binding site and Cys-373 residue. Miki M; Wahl P Biochim Biophys Acta; 1985 Apr; 828(2):188-95. PubMed ID: 3978110 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence energy transfers between points in acto-subfragment-1 rigor complex. Miki M; Wahl P Biochim Biophys Acta; 1984 Nov; 790(3):275-83. PubMed ID: 6487641 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence energy transfer between epsilon-ATP at the nucleotide binding site and N-(4-dimethylamino-3,5-dinitrophenyl)-maleimide at Cys-373 of G-actin. Miki M; Mihashi K Biochim Biophys Acta; 1978 Mar; 533(1):163-72. PubMed ID: 638187 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of nucleotide and metal ion interaction with G-actin. Nowak E; Strzelecka-Golaszewska H; Goody RS Biochemistry; 1988 Mar; 27(5):1785-92. PubMed ID: 3365424 [TBL] [Abstract][Full Text] [Related]
5. The distance separating Cys-10 from the high-affinity metal binding site in actin. Miki M; Barden JA; dos Remedios CG Biochem Int; 1986 Jun; 12(6):807-13. PubMed ID: 3741444 [TBL] [Abstract][Full Text] [Related]
6. Spatial relationship between the nucleotide-binding site, Lys-61 and Cys-374 in actin and a conformational change induced by myosin subfragment-1 binding. Miki M; dos Remedios CG; Barden JA Eur J Biochem; 1987 Oct; 168(2):339-45. PubMed ID: 3117545 [TBL] [Abstract][Full Text] [Related]
7. Myosin subfragment 1 inhibits dissociation of nucleotide and calcium from G-actin. Kasprzak AA J Biol Chem; 1993 Jun; 268(18):13261-6. PubMed ID: 8514764 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence energy transfer measurements between the nucleotide binding site and Cys-373 in actin and their application to the kinetics of actin polymerization. Miki M; Iio T Biochim Biophys Acta; 1984 Nov; 790(3):201-7. PubMed ID: 6487636 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence energy transfer between nucleotide binding sites in an F-actin filament. Miki M; Hambly BD; dos Remedios CG Biochim Biophys Acta; 1986 Jun; 871(2):137-41. PubMed ID: 3707968 [TBL] [Abstract][Full Text] [Related]
10. Distance between nucleotide site and cysteine-373 of G-actin by resonance energy transfer measurements. Cheung HC; Liu BM J Muscle Res Cell Motil; 1984 Feb; 5(1):65-80. PubMed ID: 6715528 [TBL] [Abstract][Full Text] [Related]
11. Mechanism for nucleotide exchange in monomeric actin. Frieden C; Patane K Biochemistry; 1988 May; 27(10):3812-20. PubMed ID: 3408729 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence studies of 1,N6-ethenoadenosine triphosphate bound to G-actin: the nucleotide base is inaccessible to water. Harvey SC; Cheung HC Biochem Biophys Res Commun; 1976 Dec; 73(4):865-8. PubMed ID: 15625854 [TBL] [Abstract][Full Text] [Related]
13. Domain motion in actin observed by fluorescence resonance energy transfer. Miki M; Kouyama T Biochemistry; 1994 Aug; 33(33):10171-7. PubMed ID: 8060983 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence energy transfer between Cys-10 residues in F-actin filaments. Miki M; Barden JA; Hambly BD; dos Remedios CG Biochem Int; 1986 May; 12(5):725-31. PubMed ID: 3089224 [TBL] [Abstract][Full Text] [Related]
15. Effect of Ca2+-Mg2+ exchange on the flexibility and/or conformation of the small domain in monomeric actin. Nyitrai M; Hild G; Lakos Z; Somogyi B Biophys J; 1998 May; 74(5):2474-81. PubMed ID: 9591673 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence resonance energy transfer between sites in G-actin. The spatial relationship between Cys-10, Tyr-69, Cys-374, the high-affinity metal and the nucleotide. Barden JA; dos Remedios CG Eur J Biochem; 1987 Oct; 168(1):103-9. PubMed ID: 3665911 [TBL] [Abstract][Full Text] [Related]
17. Divalent cation binding to the high- and low-affinity sites on G-actin. Zimmerle CT; Patane K; Frieden C Biochemistry; 1987 Oct; 26(20):6545-52. PubMed ID: 3427024 [TBL] [Abstract][Full Text] [Related]
18. Role of ATP-bound divalent metal ion in the conformation and function of actin. Comparison of Mg-ATP, Ca-ATP, and metal ion-free ATP-actin. Valentin-Ranc C; Carlier MF J Biol Chem; 1991 Apr; 266(12):7668-75. PubMed ID: 2019592 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence energy transfer between subfragment-1 and actin points in the rigor complex of actosubfragment-1. Takashi R Biochemistry; 1979 Nov; 18(23):5164-9. PubMed ID: 159071 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence measurements of the binding of cations to high-affinity and low-affinity sites on ATP-G-actin. Carlier MF; Pantaloni D; Korn ED J Biol Chem; 1986 Aug; 261(23):10778-84. PubMed ID: 3814248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]