These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 3978192)

  • 1. Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon.
    Loew LM; Cohen LB; Salzberg BM; Obaid AL; Bezanilla F
    Biophys J; 1985 Jan; 47(1):71-7. PubMed ID: 3978192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge-shift probes of membrane potential: a probable electrochromic mechanism for p-aminostyrylpyridinium probes on a hemispherical lipid bilayer.
    Loew LM; Simpson LL
    Biophys J; 1981 Jun; 34(3):353-65. PubMed ID: 7248466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations.
    Loew LM; Cohen LB; Dix J; Fluhler EN; Montana V; Salama G; Wu JY
    J Membr Biol; 1992 Oct; 130(1):1-10. PubMed ID: 1469705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsecond response of a voltage-sensitive merocyanine dye: fast voltage-clamp measurements on squid giant axon.
    Salzberg BM; Obaid AL; Bezanilla F
    Jpn J Physiol; 1993; 43 Suppl 1():S37-41. PubMed ID: 8271515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and kinetics of membrane dielectric polarization. II. Frequency domain studies of gating currents.
    Fernández JM; Bezanilla F; Taylor RE
    J Gen Physiol; 1982 Jan; 79(1):41-67. PubMed ID: 7061987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a voltage-dependent potassium channel in squid Schwann cells reconstituted in planar lipid bilayers.
    Noceti F; Ramírez AN; Possani LD; Prestipino G
    Glia; 1995 Sep; 15(1):33-42. PubMed ID: 8847099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible electrical breakdown of squid giant axon membrane.
    Benz R; Conti F
    Biochim Biophys Acta; 1981 Jul; 645(1):115-23. PubMed ID: 6266473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous measurement of changes in current and tracer flux in voltage-clamped squid giant axon.
    Rakowski RF
    Biophys J; 1989 Apr; 55(4):663-71. PubMed ID: 2720065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A physical model of nerve axon. II: Action potential and excitation currents. Voltage-clamp studies of chemical driving forces of Na+ and K+ in squid giant axon.
    Chang DC
    Physiol Chem Phys; 1979; 11(3):263-88. PubMed ID: 531110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid sodium channel conductance changes during voltage clamp steps in squid giant axons.
    Fohlmeister JF; Adelman WJ
    Biophys J; 1984 Mar; 45(3):513-21. PubMed ID: 6324915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence emission spectral shift measurements of membrane potential in single cells.
    Kao WY; Davis CE; Kim YI; Beach JM
    Biophys J; 2001 Aug; 81(2):1163-70. PubMed ID: 11463657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterization of electrochromic membrane probes.
    Loew LM
    J Biochem Biophys Methods; 1982 Aug; 6(3):243-60. PubMed ID: 7130621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvements in optical methods for measuring rapid changes in membrane potential.
    Gupta RK; Salzberg BM; Grinvald A; Cohen LB; Kamino K; Lesher S; Boyle MB; Waggoner AS; Wang CH
    J Membr Biol; 1981 Feb; 58(2):123-37. PubMed ID: 7218335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A voltage-clamp study of the effects of colchicine on the squid giant axon.
    Chang DC
    J Cell Physiol; 1983 Jun; 115(3):260-4. PubMed ID: 6853606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axon-Schwann cell interaction in the squid nerve fibre.
    Villegas J
    J Physiol; 1972 Sep; 225(2):275-96. PubMed ID: 5074387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetry currents in intracellularly perfused squid giant axons.
    Meves H
    Philos Trans R Soc Lond B Biol Sci; 1975 Jun; 270(908):493-500. PubMed ID: 238244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical aspects of voltage-clamping the cut-open squid giant axon.
    Forster IC; Greeff NG
    J Neurosci Methods; 1988 Dec; 26(2):151-68. PubMed ID: 3216683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution recording of asymmetry currents from the squid giant axon: technical aspects of voltage clamp design.
    Forster IC; Greeff NG
    J Neurosci Methods; 1990 Aug; 33(2-3):185-205. PubMed ID: 1700234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid changes in intracellular free calcium concentration. Detection by metallochromic indicator dyes in squid giant axon.
    Brown JE; Cohen LB; De Weer P; Pinto LH; Ross WN; Salzberg BM
    Biophys J; 1975 Nov; 15(11):1155-60. PubMed ID: 1201331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Currents recorded through small areas of squid axon membrane with an internal virtual ground voltage clamp.
    López-Barneo J; Matteson DR; Armstrong CM
    Biophys J; 1981 Dec; 36(3):811-5. PubMed ID: 7326334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.