These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3978227)

  • 1. Altered response of stored red cells to Ca2+ stress.
    Lorand L; Michalska M
    Blood; 1985 Apr; 65(4):1025-7. PubMed ID: 3978227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of transmembrane proteins in Ca2+-enriched human erythrocytes. An immunochemical study.
    Lorand L; Bjerrum OJ; Hawkins M; Lowe-Krentz L; Siefring GE
    J Biol Chem; 1983 Apr; 258(8):5300-5. PubMed ID: 6403545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of protein cross-linking in Ca2+-enriched human erythrocytes and activated platelets.
    Lorand L; Barnes N; Bruner-Lorand JA; Hawkins M; Michalska M
    Biochemistry; 1987 Jan; 26(1):308-13. PubMed ID: 2881577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of the human erythrocyte Wrb antigen to an interaction between glycophorin A and band 3.
    Telen MJ; Chasis JA
    Blood; 1990 Aug; 76(4):842-8. PubMed ID: 2383660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An immunochemical approach for the analysis of membrane protein alterations in Ca2+-loaded human erythrocytes.
    Bjerrum OJ; Hawkins M; Swanson P; Griffin M; Lorand L
    J Supramol Struct Cell Biochem; 1981; 16(3):289-301. PubMed ID: 7310899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different sensitivities of rat and human red cells to exogenous Ca2+.
    Swislocki NI; Tierney JM
    Am J Hematol; 1989 May; 31(1):1-10. PubMed ID: 2565076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased calcium permeability of cold-stored erythrocytes.
    Wiley JS; McCulloch KE; Bowden DS
    Blood; 1982 Jul; 60(1):92-8. PubMed ID: 7082850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the glycophorin C-protein 4.1 membrane-to-skeleton bridge and evaluation of its contribution to erythrocyte membrane stability.
    Chang SH; Low PS
    J Biol Chem; 2001 Jun; 276(25):22223-30. PubMed ID: 11294862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of gamma-glutamyl-epsilon-lysine bridges between membrane proteins by a Ca2+-regulated enzyme in intact erythrocytes.
    Lorand L; Siefring GE; Lowe-Krentz L
    J Supramol Struct; 1978; 9(3):427-40. PubMed ID: 34754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loxosceles intermedia spider envenomation induces activation of an endogenous metalloproteinase, resulting in cleavage of glycophorins from the erythrocyte surface and facilitating complement-mediated lysis.
    Tambourgi DV; Morgan BP; de Andrade RM; Magnoli FC; van Den Berg CW
    Blood; 2000 Jan; 95(2):683-91. PubMed ID: 10627480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete deficiency of glycophorin A in red blood cells from mice with targeted inactivation of the band 3 (AE1) gene.
    Hassoun H; Hanada T; Lutchman M; Sahr KE; Palek J; Hanspal M; Chishti AH
    Blood; 1998 Mar; 91(6):2146-51. PubMed ID: 9490702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the intrinsic transglutaminase in the Ca2+-mediated crosslinking of erythrocyte proteins.
    Lorand L; Weissmann LB; Epel DL; Bruner-Lorand J
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4479-81. PubMed ID: 12508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of high-affinity band 4.1 binding sites from membranes of glycophorin C- and D-deficient (Leach phenotype) erythrocytes.
    Gascard P; Cohen CM
    Blood; 1994 Feb; 83(4):1102-8. PubMed ID: 8111049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycophorin A dimerization and band 3 interaction during erythroid membrane biogenesis: in vivo studies in human glycophorin A transgenic mice.
    Auffray I; Marfatia S; de Jong K; Lee G; Huang CH; Paszty C; Tanner MJ; Mohandas N; Chasis JA
    Blood; 2001 May; 97(9):2872-8. PubMed ID: 11313283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane attachment sites for the membrane cytoskeletal protein 4.1 of the red blood cell.
    Pinder JC; Chung A; Reid ME; Gratzer WB
    Blood; 1993 Dec; 82(11):3482-8. PubMed ID: 8241515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the membrane attachment sites for protein 4.1 in the human erythrocyte.
    Hemming NJ; Anstee DJ; Staricoff MA; Tanner MJ; Mohandas N
    J Biol Chem; 1995 Mar; 270(10):5360-6. PubMed ID: 7890649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are alterations of protein 4.1 involved in the echinocytic transformation of red blood cells?
    Agroyannis B; Dalamangas A; Tzanatos H; Fourtounas C; Kopelias I; Konstadinidou I; Koutsikos D
    Blood; 1994 Sep; 84(5):1685-6. PubMed ID: 8068957
    [No Abstract]   [Full Text] [Related]  

  • 18. Biochemical analysis of potential sites for protein 4.1-mediated anchoring of the spectrin-actin skeleton to the erythrocyte membrane.
    Workman RF; Low PS
    J Biol Chem; 1998 Mar; 273(11):6171-6. PubMed ID: 9497338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced transglutaminase-catalyzed cross-linking of exogenous amines to membrane proteins in sickle erythrocytes.
    Ballas SK; Mohandas N; Clark MR; Embury SH; Smith ED; Marton LJ; Shohet SB
    Biochim Biophys Acta; 1985 Jan; 812(1):234-42. PubMed ID: 2857092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane phospholipid organization in calcium-loaded human erythrocytes.
    Chandra R; Joshi PC; Bajpai VK; Gupta CM
    Biochim Biophys Acta; 1987 Aug; 902(2):253-62. PubMed ID: 3620460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.