BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3979389)

  • 21. Escherichia coli cell division inhibitor DicF-RNA of the dicB operon. Evidence for its generation in vivo by transcription termination and by RNase III and RNase E-dependent processing.
    Faubladier M; Cam K; Bouché JP
    J Mol Biol; 1990 Apr; 212(3):461-71. PubMed ID: 1691299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3'-end variants.
    Hardt WD; Schlegl J; Erdmann VA; Hartmann RK
    J Mol Biol; 1995 Mar; 247(2):161-72. PubMed ID: 7535857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ribonuclease D is not essential for the normal growth of Escherichia coli or bacteriophage T4 or for the biosynthesis of a T4 suppressor tRNA.
    Blouin RT; Zaniewski R; Deutscher MP
    J Biol Chem; 1983 Feb; 258(3):1423-6. PubMed ID: 6337139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate enzymatic cleavage in vitro of a 2'-deoxyribose-substituted ribonuclease III processing signal.
    Nicholson AW
    Biochim Biophys Acta; 1992 Feb; 1129(3):318-22. PubMed ID: 1536883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III.
    Calin-Jageman I; Nicholson AW
    Nucleic Acids Res; 2003 May; 31(9):2381-92. PubMed ID: 12711683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of secondary cleavage sites of E. coli RNAaseIII in A3t RNA from bacteriophage T7.
    Gross G; Dunn JJ
    Nucleic Acids Res; 1987 Jan; 15(2):431-42. PubMed ID: 3547326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cleavage within an RNase III site can control mRNA stability and protein synthesis in vivo.
    Panayotatos N; Truong K
    Nucleic Acids Res; 1985 Apr; 13(7):2227-40. PubMed ID: 2987846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutational analysis of a ribonuclease III processing signal.
    Chelladurai B; Li H; Zhang K; Nicholson AW
    Biochemistry; 1993 Jul; 32(29):7549-58. PubMed ID: 8338852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side chain and Mn2+ rescue of the Glu117Asp mutant.
    Sun W; Nicholson AW
    Biochemistry; 2001 Apr; 40(16):5102-10. PubMed ID: 11305928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Precursor nucleotides at the 5' end are not required for processing by RNase E at the 3' end of 5-S rRNA.
    Szeberényi J; Roy MK; Apirion D
    Eur J Biochem; 1983 Nov; 136(2):321-6. PubMed ID: 6194996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transfer ribonucleic acid biosynthesis. Substrate specificity of ribonuclease P.
    Schmidt FJ; Seidman JG; Bock RM
    J Biol Chem; 1976 Apr; 251(8):2440-5. PubMed ID: 770465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of individual nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA cleavage site by short-range photo-cross-linking.
    Christian EL; McPheeters DS; Harris ME
    Biochemistry; 1998 Dec; 37(50):17618-28. PubMed ID: 9860878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli.
    Hartmann RK; Heinrich J; Schlegl J; Schuster H
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):5822-6. PubMed ID: 7597035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the RNA processing enzyme RNase III from wild type and overexpressing Escherichia coli cells in processing natural RNA substrates.
    Srivastava RA; Srivastava N; Apirion D
    Int J Biochem; 1992 May; 24(5):737-49. PubMed ID: 1375563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complementary sequences 1700 nucleotides apart form a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA.
    Young RA; Steitz JA
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3593-7. PubMed ID: 358189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants.
    Li H; Nicholson AW
    EMBO J; 1996 Mar; 15(6):1421-33. PubMed ID: 8635475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retroregulation of the bacteriophage lambda int gene: limited secondary degradation of the RNase III-processed transcript.
    Plunkett G; Echols H
    J Bacteriol; 1989 Jan; 171(1):588-92. PubMed ID: 2521618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of mRNA decay and rRNA processing in Escherichia coli multiple mutants carrying a deletion in RNase III.
    Babitzke P; Granger L; Olszewski J; Kushner SR
    J Bacteriol; 1993 Jan; 175(1):229-39. PubMed ID: 8416898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rescue of the RNA phage genome from RNase III cleavage.
    Klovins J; van Duin J; Olsthoorn RC
    Nucleic Acids Res; 1997 Nov; 25(21):4201-8. PubMed ID: 9336447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The design and catalytic properties of a simplified ribonuclease P RNA.
    Waugh DS; Green CJ; Pace NR
    Science; 1989 Jun; 244(4912):1569-71. PubMed ID: 2472671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.