These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3979396)

  • 1. The muntjak satellite IA sequence is composed of 31-base-pair internal repeats that are highly homologous to the 31-base-pair subrepeats of the bovine satellite 1.715.
    Bogenberger JM; Neumaier PS; Fittler F
    Eur J Biochem; 1985 Apr; 148(1):55-9. PubMed ID: 3979396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of X-chromosome specific satellite DNA of Muntiacus muntjak vaginalis.
    Bogenberger J; Schnell H; Fittler F
    Chromosoma; 1982; 87(1):9-20. PubMed ID: 6297861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation of a 31-bp bovine subrepeat in centromeric satellite DNA monomers of Cervus elaphus and other cervid species.
    Lee C; Lin CC
    Chromosome Res; 1996 Sep; 4(6):427-35. PubMed ID: 8889241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution and recombination of bovine DNA repeats.
    Jobse C; Buntjer JB; Haagsma N; Breukelman HJ; Beintema JJ; Lenstra JA
    J Mol Evol; 1995 Sep; 41(3):277-83. PubMed ID: 7563113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repetitive sequence families in Alces alces americana.
    Blake RD; Wang JZ; Beauregard L
    J Mol Evol; 1997 May; 44(5):509-20. PubMed ID: 9115175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly repetitive DNA component common to all Cervidae: its organization and chromosomal distribution during evolution.
    Bogenberger JM; Neitzel H; Fittler F
    Chromosoma; 1987; 95(2):154-61. PubMed ID: 3595313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher-order organization of subrepeats and the evolution of cervid satellite I DNA.
    Lee C; Court DR; Cho C; Haslett JL; Lin CC
    J Mol Evol; 1997 Mar; 44(3):327-35. PubMed ID: 9060399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence analysis of bovine satellite I DNA (1.715 gm/cm3).
    Taparowsky EJ; Gerbi SA
    Nucleic Acids Res; 1982 Feb; 10(4):1271-81. PubMed ID: 6280137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The primary structure of bovine satellite 1.715.
    Gaillard C; Doly J; Cortadas J; Bernardi G
    Nucleic Acids Res; 1981 Nov; 9(22):6069-82. PubMed ID: 6273821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concerted evolution of primate alpha satellite DNA. Evidence for an ancestral sequence shared by gorilla and human X chromosome alpha satellite.
    Durfy SJ; Willard HF
    J Mol Biol; 1990 Dec; 216(3):555-66. PubMed ID: 2258932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide sequence of mouse satellite DNA.
    Hörz W; Altenburger W
    Nucleic Acids Res; 1981 Feb; 9(3):683-96. PubMed ID: 6261227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization and characterization of recombinant DNA clones derived from the highly repetitive DNA sequences in the Indian muntjac cells: their presence in the Chinese muntjac.
    Yu LC; Lowensteiner D; Wong EF; Sawada I; Mazrimas J; Schmid C
    Chromosoma; 1986; 93(6):521-8. PubMed ID: 3015505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A satellite DNA element specific for roe deer (Capreolus capreolus).
    Buntjer JB; Nijman IJ; Zijlstra C; Lenstra JA
    Chromosoma; 1998 Mar; 107(1):1-5. PubMed ID: 9567196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of a tandem repetitive sequence cloned from the deer Capreolus capreolus and its chromosomal localisation in two muntjac species.
    Scherthan H
    Hereditas; 1991; 115(1):43-9. PubMed ID: 1774183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of highly repetitive satellite DNA of two Cucurbitaceae species (Cucumis melo and Cucumis sativus).
    Hemleben V; Leweke B; Roth A; Stadler J
    Nucleic Acids Res; 1982 Jan; 10(2):631-44. PubMed ID: 6278425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence organization and evolution, in all extant whalebone whales, of a DNA satellite with terminal chromosome localization.
    Adegoke JA; Arnason U; Widegren B
    Chromosoma; 1993 Jun; 102(6):382-8. PubMed ID: 8365348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of Tribolium madens (Insecta, Coleoptera) satellite DNA through DNA inversion and insertion.
    Ugarković D; Durajlija S; Plohl M
    J Mol Evol; 1996 Mar; 42(3):350-8. PubMed ID: 8661996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bovine 1.709 satellite. Recombination hotspots and dispersed repeated sequences.
    Skowronski J; Plucienniczak A; Bednarek A; Jaworski J
    J Mol Biol; 1984 Aug; 177(3):399-416. PubMed ID: 6088777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition and chromosomal localization of cetacean highly repetitive DNA with special reference to the blue whale, Balaenoptera musculus.
    Arnason U; Widegren B
    Chromosoma; 1989 Nov; 98(5):323-9. PubMed ID: 2612291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization and chromosomal distribution of a novel repetitive DNA component from Muntiacus muntjak vaginalis with a repeat length of more than 40 kb.
    Benedum UM; Neitzel H; Sperling K; Bogenberger J; Fittler F
    Chromosoma; 1986; 94(4):267-72. PubMed ID: 3024931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.