BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3979504)

  • 1. Essentiality of a specific cellular terrain for growth of axons into a spinal cord lesion.
    Guth L; Barrett CP; Donati EJ; Anderson FD; Smith MV; Lifson M
    Exp Neurol; 1985 Apr; 88(1):1-12. PubMed ID: 3979504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of axonal growth into a spinal lesion by topical application of triethanolamine and cytosine arabinoside.
    Guth L; Barrett CP; Donati EJ; Smith MV; Lifson M; Roberts E
    Exp Neurol; 1985 Apr; 88(1):44-55. PubMed ID: 3979515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Up-regulation of GAP-43 and growth of axons in rat spinal cord after compression injury.
    Curtis R; Green D; Lindsay RM; Wilkin GP
    J Neurocytol; 1993 Jan; 22(1):51-64. PubMed ID: 8426193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous repair after spinal cord contusion injuries in the rat.
    Beattie MS; Bresnahan JC; Komon J; Tovar CA; Van Meter M; Anderson DK; Faden AI; Hsu CY; Noble LJ; Salzman S; Young W
    Exp Neurol; 1997 Dec; 148(2):453-63. PubMed ID: 9417825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-distance axonal regeneration in the filum terminale of adult rats is regulated by ependymal cells.
    Kwiecien JM; Avram R
    J Neurotrauma; 2008 Mar; 25(3):196-204. PubMed ID: 18352833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration.
    Zhang Z; Guth L
    Exp Neurol; 1997 Sep; 147(1):159-71. PubMed ID: 9294413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages.
    Frisén J; Haegerstrand A; Fried K; Piehl F; Cullheim S; Risling M
    Exp Neurol; 1994 Oct; 129(2):183-93. PubMed ID: 7957733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of the glial environment of a photochemically induced lesion in the rat spinal cord by transplantation of mixed glial cells.
    Olby NJ; Blakemore WF
    J Neurocytol; 1996 Aug; 25(8):481-98. PubMed ID: 8899569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat.
    Bregman BS; McAtee M; Dai HN; Kuhn PL
    Exp Neurol; 1997 Dec; 148(2):475-94. PubMed ID: 9417827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous longitudinally orientated axonal regeneration is associated with the Schwann cell framework within the lesion site following spinal cord compression injury of the rat.
    Brook GA; Plate D; Franzen R; Martin D; Moonen G; Schoenen J; Schmitt AB; Noth J; Nacimiento W
    J Neurosci Res; 1998 Jul; 53(1):51-65. PubMed ID: 9670992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord.
    Prewitt CM; Niesman IR; Kane CJ; Houlé JD
    Exp Neurol; 1997 Dec; 148(2):433-43. PubMed ID: 9417823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy.
    Bunge MB; Holets VR; Bates ML; Clarke TS; Watson BD
    Exp Neurol; 1994 May; 127(1):76-93. PubMed ID: 8200439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fetal spinal cord tissue in mini-guidance channels promotes longitudinal axonal growth after grafting into hemisected adult rat spinal cords.
    Bamber NI; Li H; Aebischer P; Xu XM
    Neural Plast; 1999; 6(4):103-21. PubMed ID: 10714264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nerve fibre regeneration across the PNS-CNS interface at the root-spinal cord junction.
    Carlstedt T; Cullheim S; Risling M; Ulfhake B
    Brain Res Bull; 1989 Jan; 22(1):93-102. PubMed ID: 2713720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal cord injury in the rat: treatment with bacterial lipopolysaccharide and indomethacin enhances cellular repair and locomotor function.
    Guth L; Zhang Z; DiProspero NA; Joubin K; Fitch MT
    Exp Neurol; 1994 Mar; 126(1):76-87. PubMed ID: 8157128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurite outgrowth through lesions of neonatal opossum spinal cord in culture.
    Varga ZM; Fernandez J; Blackshaw S; Martin AR; Muller KJ; Adams WB; Nicholls JG
    J Comp Neurol; 1996 Mar; 366(4):600-12. PubMed ID: 8833112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An oscillating extracellular voltage gradient reduces the density and influences the orientation of astrocytes in injured mammalian spinal cord.
    Moriarty LJ; Borgens RB
    J Neurocytol; 2001 Jan; 30(1):45-57. PubMed ID: 11577245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histopathological reactions an axonal regeneration in the transected spinal cord of Hibernating squirrels.
    Guth L; Barrett CP; Donati EJ; Deshpande SS; Albuquerque EX
    J Comp Neurol; 1981 Dec; 203(2):297-308. PubMed ID: 7309924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic regenerative changes in the spinal cord after cord compression injury in rats.
    Wallace MC; Tator CH; Lewis AJ
    Surg Neurol; 1987 Mar; 27(3):209-19. PubMed ID: 2433780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transplantation of fetal spinal cord tissue into the chronically injured adult rat spinal cord.
    Houlé JD; Reier PJ
    J Comp Neurol; 1988 Mar; 269(4):535-47. PubMed ID: 2453536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.