These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3980469)

  • 21. Free fatty acids modulate intermembrane trafficking of cholesterol by increasing lipid mobilities: novel 13C NMR analyses of free cholesterol partitioning.
    Johnson RA; Hamilton JA; Worgall TS; Deckelbaum RJ
    Biochemistry; 2003 Feb; 42(6):1637-45. PubMed ID: 12578377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length.
    Silvius JR; del Giudice D; Lafleur M
    Biochemistry; 1996 Dec; 35(48):15198-208. PubMed ID: 8952467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationships between membrane lipid composition and biological properties of rat myocytes. Effects of aging and manipulation of lipid composition.
    Yechiel E; Barenholz Y
    J Biol Chem; 1985 Aug; 260(16):9123-31. PubMed ID: 3839508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting.
    Kleinfeld AM; Chu P; Romero C
    Biochemistry; 1997 Nov; 36(46):14146-58. PubMed ID: 9369487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic parameters of the interactions of retinol with lipid bilayers.
    Noy N; Xu ZJ
    Biochemistry; 1990 Apr; 29(16):3883-8. PubMed ID: 2354159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Affinity of Cholesterol for Different Phospholipids Affects Lateral Segregation in Bilayers.
    Engberg O; Hautala V; Yasuda T; Dehio H; Murata M; Slotte JP; Nyholm TKM
    Biophys J; 2016 Aug; 111(3):546-556. PubMed ID: 27508438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interfacial catalysis by phospholipase A2: substrate specificity in vesicles.
    Ghomashchi F; Yu BZ; Berg O; Jain MK; Gelb MH
    Biochemistry; 1991 Jul; 30(29):7318-29. PubMed ID: 1854740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Miscibility of Sphingomyelins and Phosphatidylcholines in Unsaturated Phosphatidylcholine Bilayers.
    Kullberg A; Ekholm OO; Slotte JP
    Biophys J; 2015 Nov; 109(9):1907-16. PubMed ID: 26536267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factors contributing to the distribution of cholesterol among phospholipid vesicles.
    Yeagle PL; Young JE
    J Biol Chem; 1986 Jun; 261(18):8175-81. PubMed ID: 3722148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholesterol transfer between lipid vesicles. Effect of phospholipids and gangliosides.
    Thomas PD; Poznansky MJ
    Biochem J; 1988 Apr; 251(1):55-61. PubMed ID: 3390160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of cholesterol on equilibrium and dynamic bilayer structure of unsaturated acyl chain phosphatidylcholine vesicles as determined from higher order analysis of fluorescence anisotropy decay.
    Straume M; Litman BJ
    Biochemistry; 1987 Aug; 26(16):5121-6. PubMed ID: 3663648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dependence on phospholipid composition of the fraction of cholesterol undergoing spontaneous exchange between small unilamellar vesicles.
    Bar LK; Barenholz Y; Thompson TE
    Biochemistry; 1987 Aug; 26(17):5460-5. PubMed ID: 3676264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acyl chain and headgroup specificity of human plasma lecithin:cholesterol acyltransferase. Separation of matrix and molecular specificities.
    Pownall HJ; Pao Q; Massey JB
    J Biol Chem; 1985 Feb; 260(4):2146-52. PubMed ID: 3918998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of short-chain lecithin with long-chain phospholipids: characterization of vesicles that form spontaneously.
    Gabriel NE; Roberts MF
    Biochemistry; 1986 May; 25(10):2812-21. PubMed ID: 3718923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers.
    Kamp F; Hamilton JA; Kamp F; Westerhoff HV; Hamilton JA
    Biochemistry; 1993 Oct; 32(41):11074-86. PubMed ID: 8218171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of pH on the affinity of phospholipids for cholesterol.
    Jacobsohn MK; Bazilian LS; Hardiman J; Jacobsohn GM
    Lipids; 1989 May; 24(5):375-82. PubMed ID: 2755314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transbilayer movement and net flux of cholesterol and cholesterol sulfate between liposomal membranes.
    Rodrigueza WV; Wheeler JJ; Klimuk SK; Kitson CN; Hope MJ
    Biochemistry; 1995 May; 34(18):6208-17. PubMed ID: 7742326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous cholesterol movement between lipid vesicles and monkey small intestinal brush border membrane.
    Sadana T; Sanyal SN; Majumdar S; Dhall K; Chakravarti RN
    Biochem Cell Biol; 1986 Jun; 64(6):575-82. PubMed ID: 3741674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol.
    Slater SJ; Ho C; Taddeo FJ; Kelly MB; Stubbs CD
    Biochemistry; 1993 Apr; 32(14):3714-21. PubMed ID: 8466911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics and mechanism of long-chain fatty acid transport into phosphatidylcholine vesicles from various donor systems.
    Thomas RM; Baici A; Werder M; Schulthess G; Hauser H
    Biochemistry; 2002 Feb; 41(5):1591-601. PubMed ID: 11814353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.