BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 3980580)

  • 1. Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy.
    Lanni F; Waggoner AS; Taylor DL
    J Cell Biol; 1985 Apr; 100(4):1091-102. PubMed ID: 3980580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total internal reflection fluorescence (TIRF) microscopy. I. Modelling cell contact region fluorescence.
    Reichert WM; Truskey GA
    J Cell Sci; 1990 Jun; 96 ( Pt 2)():219-30. PubMed ID: 2211864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Five-parameter fluorescence imaging: wound healing of living Swiss 3T3 cells.
    DeBiasio R; Bright GR; Ernst LA; Waggoner AS; Taylor DL
    J Cell Biol; 1987 Oct; 105(4):1613-22. PubMed ID: 2444600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior of a fluorescent analogue of calmodulin in living 3T3 cells.
    Luby-Phelps K; Lanni F; Taylor DL
    J Cell Biol; 1985 Oct; 101(4):1245-56. PubMed ID: 4044638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique.
    Izzard CS; Lochner LR
    J Cell Sci; 1976 Jun; 21(1):129-59. PubMed ID: 932106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the mechanism of incorporation of fluorescently labeled actin into stress fibers.
    Amato PA; Taylor DL
    J Cell Biol; 1986 Mar; 102(3):1074-84. PubMed ID: 3949874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of TIRF microscopy to visualize actin and microtubules in migrating cells.
    Manneville JB
    Methods Enzymol; 2006; 406():520-32. PubMed ID: 16472684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular distribution of rhodamine-actin microinjected into living fibroblastic cells.
    Glacy SD
    J Cell Biol; 1983 Oct; 97(4):1207-13. PubMed ID: 6684662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of actin in spreading macrophages: a comparative study on living and fixed cells.
    Amato PA; Unanue ER; Taylor DL
    J Cell Biol; 1983 Mar; 96(3):750-61. PubMed ID: 6339523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances.
    Truskey GA; Burmeister JS; Grapa E; Reichert WM
    J Cell Sci; 1992 Oct; 103 ( Pt 2)():491-9. PubMed ID: 1478950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear reassembly excludes large macromolecules.
    Swanson JA; McNeil PL
    Science; 1987 Oct; 238(4826):548-50. PubMed ID: 2443981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topography of cell-glass apposition revealed by total internal reflection fluorescence of volume markers.
    Gingell D; Todd I; Bailey J
    J Cell Biol; 1985 Apr; 100(4):1334-8. PubMed ID: 2579959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy.
    Byrne GD; Vllasaliu D; Falcone FH; Somekh MG; Stolnik S
    Mol Pharm; 2015 Nov; 12(11):3862-70. PubMed ID: 26402436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topography of Cells Revealed by Variable-Angle Total Internal Reflection Fluorescence Microscopy.
    Cardoso Dos Santos M; Déturche R; Vézy C; Jaffiol R
    Biophys J; 2016 Sep; 111(6):1316-1327. PubMed ID: 27653490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens.
    Chung E; Kim D; Cui Y; Kim YH; So PT
    Biophys J; 2007 Sep; 93(5):1747-57. PubMed ID: 17483188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping fluorophore distributions in three dimensions by quantitative multiple angle-total internal reflection fluorescence microscopy.
    Olveczky BP; Periasamy N; Verkman AS
    Biophys J; 1997 Nov; 73(5):2836-47. PubMed ID: 9370477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General electromagnetic theory of total internal reflection fluorescence: the quantitative basis for mapping cell-substratum topography.
    Gingell D; Heavens OS; Mellor JS
    J Cell Sci; 1987 Jun; 87 ( Pt 5)():677-93. PubMed ID: 3667723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structured illumination microscopy reveals focal adhesions are composed of linear subunits.
    Hu S; Tee YH; Kabla A; Zaidel-Bar R; Bershadsky A; Hersen P
    Cytoskeleton (Hoboken); 2015 May; 72(5):235-45. PubMed ID: 26012525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total internal reflection fluorescence (TIRF) microscopy.
    Trache A; Meininger GA
    Curr Protoc Microbiol; 2008 Aug; Chapter 2():Unit 2A.2.1-2A.2.22. PubMed ID: 18729056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of beta 1 integrin-mediated adhesive contacts in motile fibroblasts.
    Regen CM; Horwitz AF
    J Cell Biol; 1992 Dec; 119(5):1347-59. PubMed ID: 1280274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.