These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 3981228)

  • 1. Primate globus pallidus and subthalamic nucleus: functional organization.
    DeLong MR; Crutcher MD; Georgopoulos AP
    J Neurophysiol; 1985 Feb; 53(2):530-43. PubMed ID: 3981228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Information processing from the motor cortices to the subthalamic nucleus and globus pallidus and their somatotopic organizations revealed electrophysiologically in monkeys.
    Iwamuro H; Tachibana Y; Ugawa Y; Saito N; Nambu A
    Eur J Neurosci; 2017 Dec; 46(11):2684-2701. PubMed ID: 29044874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural information transferred from the putamen to the globus pallidus during learned movement in the monkey.
    Kimura M; Kato M; Shimazaki H; Watanabe K; Matsumoto N
    J Neurophysiol; 1996 Dec; 76(6):3771-86. PubMed ID: 8985875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The primate subthalamic nucleus. I. Functional properties in intact animals.
    Wichmann T; Bergman H; DeLong MR
    J Neurophysiol; 1994 Aug; 72(2):494-506. PubMed ID: 7983514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey.
    Georgopoulos AP; DeLong MR; Crutcher MD
    J Neurosci; 1983 Aug; 3(8):1586-98. PubMed ID: 6875658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional organization of the basal ganglia: contributions of single-cell recording studies.
    Delong MR; Georgopoulos AP; Crutcher MD; Mitchell SJ; Richardson RT; Alexander GE
    Ciba Found Symp; 1984; 107():64-82. PubMed ID: 6389041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey.
    Kita H; Tachibana Y; Nambu A; Chiken S
    J Neurosci; 2005 Sep; 25(38):8611-9. PubMed ID: 16177028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of identified wrist-related pallidal neurons during step and ramp wrist movements in the monkey.
    Hamada I; DeLong MR; Mano N
    J Neurophysiol; 1990 Dec; 64(6):1892-906. PubMed ID: 2074471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics and somatotopic organization of kinesthetic cells in the globus pallidus of patients with Parkinson's disease.
    Taha JM; Favre J; Baumann TK; Burchiel KJ
    J Neurosurg; 1996 Dec; 85(6):1005-12. PubMed ID: 8929488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters.
    Mink JW; Thach WT
    J Neurophysiol; 1991 Feb; 65(2):301-29. PubMed ID: 2016643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor cortical control of internal pallidal activity through glutamatergic and GABAergic inputs in awake monkeys.
    Tachibana Y; Kita H; Chiken S; Takada M; Nambu A
    Eur J Neurosci; 2008 Jan; 27(1):238-53. PubMed ID: 18093168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The primate globus pallidus: neuronal activity related to direction of movement.
    Mitchell SJ; Richardson RT; Baker FH; DeLong MR
    Exp Brain Res; 1987; 68(3):491-505. PubMed ID: 3691721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pallidal discharge related to the kinematics of reaching movements in two dimensions.
    Turner RS; Anderson ME
    J Neurophysiol; 1997 Mar; 77(3):1051-74. PubMed ID: 9084582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson's disease.
    Levy R; Dostrovsky JO; Lang AE; Sime E; Hutchison WD; Lozano AM
    J Neurophysiol; 2001 Jul; 86(1):249-60. PubMed ID: 11431506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of neurons in cerebellar-receiving and pallidal-receiving areas of the thalamus of the behaving monkey.
    Anderson ME; Turner RS
    J Neurophysiol; 1991 Sep; 66(3):879-93. PubMed ID: 1753292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of globus pallidus on arm movements in monkeys. II. Effects of stimulation.
    Horak FB; Anderson ME
    J Neurophysiol; 1984 Aug; 52(2):305-22. PubMed ID: 6481435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-axon tracing study of neurons of the external segment of the globus pallidus in primate.
    Sato F; Lavallée P; Lévesque M; Parent A
    J Comp Neurol; 2000 Jan; 417(1):17-31. PubMed ID: 10660885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal branching pattern of neurons of the subthalamic nucleus in primates.
    Sato F; Parent M; Levesque M; Parent A
    J Comp Neurol; 2000 Aug; 424(1):142-52. PubMed ID: 10888744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proprioceptive activity in primate primary somatosensory cortex during active arm reaching movements.
    Prud'homme MJ; Kalaska JF
    J Neurophysiol; 1994 Nov; 72(5):2280-301. PubMed ID: 7884459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subthalamic nucleus and globus pallidus interna influence firing of tonically active neurons in the primate striatum through different mechanisms.
    Nakajima A; Shimo Y; Uka T; Hattori N
    Eur J Neurosci; 2017 Dec; 46(11):2662-2673. PubMed ID: 28949036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.