These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3981251)

  • 1. Recovery of acetylcholinesterase at intact neuromuscular junctions after in vivo inactivation with di-isopropylfluorophosphate.
    Kasprzak H; Salpeter MM
    J Neurosci; 1985 Apr; 5(4):951-5. PubMed ID: 3981251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endplates after esterase inactivation in vivo: correlation between esterase concentration, functional response and fine structure.
    Salpeter MM; Kasprzak H; Feng H; Fertuck H
    J Neurocytol; 1979 Feb; 8(1):95-115. PubMed ID: 438872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative studies on enzymes in structures in striated muscles by labeled inhibitor methods. I. The number of acetylcholinesterase molecules and of other DFP-reactive sites at motor endplates, measured by radioautography.
    Rogers AW; Darzynkiewicz Z; Salpeter MM; Ostrowski K; Barnard EA
    J Cell Biol; 1969 Jun; 41(3):665-85. PubMed ID: 4181315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of -bungarotoxin on acetylcholinesterase bound to mouse diaphragm endplates.
    Stalc A; Zupancic AO
    Nat New Biol; 1972 Sep; 239(90):91-2. PubMed ID: 4512832
    [No Abstract]   [Full Text] [Related]  

  • 5. Quantitative studies on enzymes in structures in striated muscles by labeled inhibitor methods. II. Confirmation of radioautographic measurement by liquid-scintillation counting.
    Rogers AW; Barnard EA
    J Cell Biol; 1969 Jun; 41(3):686-95. PubMed ID: 5768869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra- versus extracellular recovery of 16S acetylcholinesterase following organophosphate inactivation in the rat.
    Fernandez HL; Stiles JR
    Neurosci Lett; 1984 Aug; 49(1-2):117-22. PubMed ID: 6493583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholinesterase in the fast extraocular muscle of the mouse by light and electron microscope autoradiography.
    Salpeter MM; Rogers AW; Kasprzak H; McHenry FA
    J Cell Biol; 1978 Jul; 78(1):274-85. PubMed ID: 670295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of neuromuscular junctions in adult rats: accumulation of acetylcholine receptors, acetylcholinesterase, and components of synaptic basal lamina.
    Weinberg CB; Sanes JR; Hall ZW
    Dev Biol; 1981 Jun; 84(2):255-66. PubMed ID: 20737863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microscope radioautography as a quantitative tool in enzyme cytochemistry. II. The distribution of DFP-reactive sties at motor endplates of a vertebrate twitch muscle.
    Salpeter MM
    J Cell Biol; 1969 Jul; 42(1):122-34. PubMed ID: 5786978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of acetylcholinesterase appearance at neuromuscular junctions in vitro.
    Rubin LL; Schuetze SM; Weill CL; Fischbach GD
    Nature; 1980 Jan; 283(5744):264-7. PubMed ID: 6243395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneity of neuromuscular junctions in striated muscle of human esophagus demonstrated by triple staining for the vesicular acetylcholine transporter, alpha-bungarotoxin, and acetylcholinesterase.
    Kallmünzer B; Sörensen B; Neuhuber WL; Wörl J
    Cell Tissue Res; 2006 May; 324(2):181-8. PubMed ID: 16437206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dolichos biflorus agglutinin receptors in mouse muscle. I. Developmental expression in relation to synaptic acetylcholinesterase and to neuromuscular disease.
    Kaupmann K; Heimann P; Jockusch H
    Eur J Cell Biol; 1988 Aug; 46(3):411-8. PubMed ID: 3181163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal lamina directs acetylcholinesterase accumulation at synaptic sites in regenerating muscle.
    Anglister L; McMahan UJ
    J Cell Biol; 1985 Sep; 101(3):735-43. PubMed ID: 3875617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo recovery of muscle contraction after alpha-bungarotoxin binding.
    Fertuck HC; Woodward W; Salpeter MM
    J Cell Biol; 1975 Jul; 66(1):209-13. PubMed ID: 1141378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholinesterase density and turnover number at frog neuromuscular junctions, with modeling of their role in synaptic function.
    Anglister L; Stiles JR; Salpeter MM
    Neuron; 1994 Apr; 12(4):783-94. PubMed ID: 8161450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic receptor molecules and cholinesterase molecules at mouse skeletal muscle junctions.
    Barnard EA; Wieckowski J; Chiu TH
    Nature; 1971 Nov; 234(5326):207-9. PubMed ID: 4943086
    [No Abstract]   [Full Text] [Related]  

  • 17. Inhibition of acetylcholinesterase accelerates axon terminal withdrawal at the developing rat neuromuscular junction.
    Duxson MJ; Vrbová G
    J Neurocytol; 1985 Jun; 14(3):337-63. PubMed ID: 4045509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The acetylcholine receptor and the ionic conductance modulation system of skeletal muscle.
    Barnard EA; Dolly JO; Porter CW; Albuquerque EX
    Exp Neurol; 1975 Jul; 48(1):1-28. PubMed ID: 165962
    [No Abstract]   [Full Text] [Related]  

  • 19. Localization of acetylcholine receptor by 125I-labeled alpha-bungarotoxin binding at mouse motor endplates.
    Fertuck HC; Salpeter MM
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1376-8. PubMed ID: 4524643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agonist-induced myopathy at the neuromuscular junction is mediated by calcium.
    Leonard JP; Salpeter MM
    J Cell Biol; 1979 Sep; 82(3):811-9. PubMed ID: 511934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.