These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3981298)

  • 1. A cumulative damage model for bone fracture.
    Carter DR; Caler WE
    J Orthop Res; 1985; 3(1):84-90. PubMed ID: 3981298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fatigue damage model for the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Biomech; 2004 Oct; 37(10):1505-12. PubMed ID: 15336925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cycle-dependent and time-dependent bone fracture with repeated loading.
    Carter DR; Caler WE
    J Biomech Eng; 1983 May; 105(2):166-70. PubMed ID: 6865359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone creep-fatigue damage accumulation.
    Caler WE; Carter DR
    J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical model for repair of fatigue damage and stress fracture in osteonal bone.
    Martin B
    J Orthop Res; 1995 May; 13(3):309-16. PubMed ID: 7602391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile fatigue in bone: are cycles-, or time to failure, or both, important?
    Zioupos P; Currey JD; Casinos A
    J Theor Biol; 2001 Jun; 210(3):389-99. PubMed ID: 11397140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fiber-ceramic matrix composite material model for osteonal cortical bone fracture micromechanics: solution of arbitrary microcracks interaction.
    Raeisi Najafi A; Arshi AR; Saffar KP; Eslami MR; Fariborz S; Moeinzadeh MH
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):217-23. PubMed ID: 19627826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling fatigue damage evolution in bone.
    Pidaparti RM; Wang QY; Burr DB
    Biomed Mater Eng; 2001; 11(2):69-78. PubMed ID: 11352114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-dimensional elastic plastic damage constitutive law for bone tissue.
    Garcia D; Zysset PK; Charlebois M; Curnier A
    Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Damage mechanisms and failure modes of cortical bone under components of physiological loading.
    George WT; Vashishth D
    J Orthop Res; 2005 Sep; 23(5):1047-53. PubMed ID: 16140189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh MH
    J Biomech; 2007; 40(12):2788-95. PubMed ID: 17376454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model of flexural fatigue damage accumulation for cortical bone.
    Griffin LV; Gibeling JC; Martin RB; Gibson VA; Stover SM
    J Orthop Res; 1997 Jul; 15(4):607-14. PubMed ID: 9379272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact bone fatigue damage: a microscopic examination.
    Carter DR; Hayes WC
    Clin Orthop Relat Res; 1977; (127):265-74. PubMed ID: 912990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Biomaterials; 2006 Mar; 27(9):2095-113. PubMed ID: 16271757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fracture toughness of cortical bone in tension, shear, and tear--a comparison of longitudinal and transverse fracture].
    Feng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Sep; 14(3):199-204. PubMed ID: 11326832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue of cortical bone under combined axial-torsional loading.
    Vashishth D; Tanner KE; Bonfield W
    J Orthop Res; 2001 May; 19(3):414-20. PubMed ID: 11398854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteon pullout in the equine third metacarpal bone: effects of ex vivo fatigue.
    Hiller LP; Stover SM; Gibson VA; Gibeling JC; Prater CS; Hazelwood SJ; Yeh OC; Martin RB
    J Orthop Res; 2003 May; 21(3):481-8. PubMed ID: 12706021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the rat forelimb compression model to create discrete levels of bone damage in vivo.
    Uthgenannt BA; Silva MJ
    J Biomech; 2007; 40(2):317-24. PubMed ID: 16519891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.