These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3981641)

  • 1. Aquatic prey capture in ambystomatid salamanders: patterns of variation in muscle activity.
    Shaffer HB; Lauder GV
    J Morphol; 1985 Mar; 183(3):273-84. PubMed ID: 3981641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional morphology of the feeding mechanism in aquatic ambystomatid salamanders.
    Lauder GV; Shaffer HB
    J Morphol; 1985 Sep; 185(3):297-326. PubMed ID: 4057265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PATTERNS OF VARIATION IN AQUATIC AMBYSTOMATID SALAMANDERS: KINEMATICS OF THE FEEDING MECHANISM.
    Shaffer HB; Lauder GV
    Evolution; 1985 Jan; 39(1):83-92. PubMed ID: 28563645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of motor patterns: aquatic feeding in salamanders and ray-finned fishes.
    Wainwright PC; Sanford CP; Reilly SM; Lauder GV
    Brain Behav Evol; 1989; 34(6):329-41. PubMed ID: 2611639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology, behavior, and evolution: comparative kinematics of aquatic feeding in salamanders.
    Reilly SM; Lauder GV
    Brain Behav Evol; 1992; 40(4):182-96. PubMed ID: 1450894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in neuromuscular activity during prey capture by trophic specialists and generalists (Pisces: Labridae).
    Sanderson SL
    Brain Behav Evol; 1988; 32(5):257-68. PubMed ID: 3233485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biting releases constraints on moray eel feeding kinematics.
    Mehta RS; Wainwright PC
    J Exp Biol; 2007 Feb; 210(Pt 3):495-504. PubMed ID: 17234619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is a convergently derived muscle-activity pattern driving novel raking behaviours in teleost fishes?
    Konow N; Sanford CP
    J Exp Biol; 2008 Mar; 211(Pt 6):989-99. PubMed ID: 18310124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling masticatory muscle force in finite element analysis: sensitivity analysis using principal coordinates analysis.
    Ross CF; Patel BA; Slice DE; Strait DS; Dechow PC; Richmond BG; Spencer MA
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):288-99. PubMed ID: 15747351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prey capture kinematics of ant-eating lizards.
    Meyers JJ; Herrel A
    J Exp Biol; 2005 Jan; 208(Pt 1):113-27. PubMed ID: 15601883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation and variability of prey capture kinematics in clariid catfishes.
    Van Wassenbergh S; Herrel A; Adriaens D; Aerts P
    J Exp Zool A Comp Exp Biol; 2006 Jul; 305(7):559-69. PubMed ID: 16615101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interspecific variation in sternohyoideus muscle morphology in clariid catfishes: functional implications for suction feeding.
    Van Wassenbergh S; Herrel A; Adriaens D; Aerts P
    J Morphol; 2007 Mar; 268(3):232-42. PubMed ID: 17265443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of acute low body temperature on predatory behavior and prey-capture efficiency in a plethodontid salamander.
    Marvin GA; Davis K; Dawson J
    Physiol Behav; 2016 May; 158():121-7. PubMed ID: 26939728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquatic prey capture in ray-finned fishes: a century of progress and new directions.
    Ferry-Graham LA; Lauder GV
    J Morphol; 2001 May; 248(2):99-119. PubMed ID: 11304743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Storage and recovery of elastic potential energy powers ballistic prey capture in toads.
    Lappin AK; Monroy JA; Pilarski JQ; Zepnewski ED; Pierotti DJ; Nishikawa KC
    J Exp Biol; 2006 Jul; 209(Pt 13):2535-53. PubMed ID: 16788037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electromyographic analysis of electrically-evoked prey-catching behavior by means of stimuli applied to the optic tectum in the Japanese toad.
    Matsushima T; Satou M; Ueda K
    Neurosci Res; 1985 Dec; 3(2):154-61. PubMed ID: 3837863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prey-capture in Pomacanthus semicirculatus (Teleostei, Pomacanthidae): functional implications of intramandibular joints in marine angelfishes.
    Konow N; Bellwood DR
    J Exp Biol; 2005 Apr; 208(Pt 8):1421-33. PubMed ID: 15802666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of a convergently derived prey-processing mechanism in fishes: evidence from comparative tongue bite apparatus morphology and raking kinematics.
    Konow N; Sanford CP
    J Exp Biol; 2008 Nov; 211(Pt 21):3378-91. PubMed ID: 18931311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional morphology of the feeding apparatus, feeding constraints, and suction performance in the nurse shark Ginglymostoma cirratum.
    Motta PJ; Hueter RE; Tricas TC; Summers AP; Huber DR; Lowry D; Mara KR; Matott MP; Whitenack LB; Wintzer AP
    J Morphol; 2008 Sep; 269(9):1041-55. PubMed ID: 18473370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparisons of aquatic versus terrestrial predatory strikes in the pitviper, Agkistrodon piscivorus.
    Vincent SE; Herrel A; Irschick DJ
    J Exp Zool A Comp Exp Biol; 2005 Jun; 303(6):476-88. PubMed ID: 15880763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.