These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 3985631)

  • 1. Active transport of nonpolar amino acids in Chromatium vinosum.
    Cobb AD; Knaff DB
    Arch Biochem Biophys; 1985 Apr; 238(1):97-110. PubMed ID: 3985631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L-aspartate transport in the photosynthetic bacterium Chromatium vinosum.
    Cobb AD; Knaff DB
    Arch Biochem Biophys; 1983 Aug; 225(1):86-94. PubMed ID: 6614931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysine and arginine transport in the photosynthetic bacterium Chromatium vinosum.
    Kim YA; Knaff DB
    Arch Biochem Biophys; 1988 Jan; 260(1):134-8. PubMed ID: 3124743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium-dependent alpha-aminoisobutyrate transport by the photosynthetic purple sulfur bacterium Chromatium vinosum.
    Pettitt CA; Davidson VL; Cobb A; Knaff DB
    Arch Biochem Biophys; 1982 Jun; 216(1):306-13. PubMed ID: 7103510
    [No Abstract]   [Full Text] [Related]  

  • 6. Characterization of neutral amino acid transport in a marine pseudomonad.
    Fein JE; MacLeod RA
    J Bacteriol; 1975 Dec; 124(3):1177-90. PubMed ID: 1194233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of amino acids by Chromatium sp. strain D.
    Wagner BJ; Miović ML; Gibson J
    Arch Mikrobiol; 1973 Jun; 91(3):255-72. PubMed ID: 4732225
    [No Abstract]   [Full Text] [Related]  

  • 8. Third system for neutral amino acid transport in a marine pseudomonad.
    Pearce SM; Hildebrandt VA; Lee T
    J Bacteriol; 1977 Apr; 130(1):37-47. PubMed ID: 856786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active transport in the photosynthetic bacterium Chromatium vinosum.
    Knaff DB
    Arch Biochem Biophys; 1978 Aug; 189(2):225-30. PubMed ID: 30400
    [No Abstract]   [Full Text] [Related]  

  • 10. The role of the proton electrochemical gradient in the transepithelial absorption of amino acids by human intestinal Caco-2 cell monolayers.
    Thwaites DT; McEwan GT; Simmons NL
    J Membr Biol; 1995 Jun; 145(3):245-56. PubMed ID: 7563025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates.
    Van Winkle LJ; Campione AL; Gorman JM
    J Biol Chem; 1988 Mar; 263(7):3150-63. PubMed ID: 3125176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further studies of amino acid transport by embryonic chick bone.
    Adamson LF; Ingbar SH
    J Biol Chem; 1967 Jun; 242(11):2646-52. PubMed ID: 6027240
    [No Abstract]   [Full Text] [Related]  

  • 13. Multiplicity of isoleucine, leucine, and valine transport systems in Escherichia coli K-12.
    Guardiola J; De Felice M; Klopotowski T; Iaccarino M
    J Bacteriol; 1974 Feb; 117(2):382-92. PubMed ID: 4590464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repression and inhibition of transport systems for branched-chain amino acids in Salmonella typhimurium.
    Kiritani K; Ohnishi K
    J Bacteriol; 1977 Feb; 129(2):589-98. PubMed ID: 320186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural determinants in substrate recognition by proton-amino acid symports in plasma membrane vesicles isolated from sugar beet leaves.
    Li ZC; Bush DR
    Arch Biochem Biophys; 1992 May; 294(2):519-26. PubMed ID: 1567208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of amino acids into the oestrogen-primed uterus. Enchancement of the uptake by a preliminary incubation.
    Riggs TR; Pan MW
    Biochem J; 1972 Jun; 128(1):19-27. PubMed ID: 5085566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-dependent sodium efflux and sodium-dependent alpha-aminoisobutyrate transport in purple photosynthetic bacteria.
    Knaff DB; Davidson VL; Petitt CA
    Arch Biochem Biophys; 1981 Oct; 211(1):234-9. PubMed ID: 7305368
    [No Abstract]   [Full Text] [Related]  

  • 18. Sodium-dependent transport of branched-chain amino acids by a monensin-sensitive ruminal peptostreptococcus.
    Chen GJ; Russell JB
    Appl Environ Microbiol; 1989 Oct; 55(10):2658-63. PubMed ID: 2604404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid transport in plasma-membrane vesicles from rat liver. Characterization of L-alanine transport.
    Sips HJ; Van Amelsvoort JM; Van Dam K
    Eur J Biochem; 1980 Apr; 105(2):217-24. PubMed ID: 7379782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the membrane potential in active transport by the photosynthetic bacterium Chromatium vinosum.
    Knaff DB; Whetstone R; Carr JW
    FEBS Lett; 1979 Mar; 99(2):283-6. PubMed ID: 428553
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.