These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3985939)

  • 1. Fragmentation and reduction of bovine secretory component. Preparation of a biologically active fragment and some evidence for a multiple-domain structure.
    Beale D; Hopley JG
    Biochem J; 1985 Mar; 226(3):661-7. PubMed ID: 3985939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptic digestion of bovine secretory IgA at elevated temperature and in urea. Isolation of SC domain 1 which is covalently bound to IgA dimer and binds non-covalently to IgM.
    Beale D
    Int J Biochem; 1989; 21(5):549-54. PubMed ID: 2759330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in fragmentation between bound and unbound bovine secretory component suggest a model for its interaction with polymeric immunoglobulin.
    Beale D
    Biochem J; 1985 Aug; 229(3):759-63. PubMed ID: 4052023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sites of tryptic cleavage in bovine secretory component: structural and functional implications.
    Beale D; Coadwell J
    Biochim Biophys Acta; 1987 Apr; 912(3):365-70. PubMed ID: 3567207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanogen bromide cleavage of bovine secretory component and its tryptic fragments.
    Beale D
    Int J Biochem; 1988; 20(8):873-9. PubMed ID: 3169370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bovine epithelial membrane protein that binds polymeric immunoglobulin and has a structure related to that of bovine secretory component.
    Beale D; Hopley J
    Biochem J; 1986 Jan; 233(1):37-40. PubMed ID: 3954734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural variability of rabbit secretory components. Allotype-associated differences in the third, fourth, and fifth domains.
    Frutiger S; Hughes GJ; Hanly WC; Kingzette M; Jaton JC
    J Biol Chem; 1987 Aug; 262(22):10463-9. PubMed ID: 3611078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The amino-terminal domain of rabbit secretory component is responsible for noncovalent binding to immunoglobulin A dimers.
    Frutiger S; Hughes GJ; Hanly WC; Kingzette M; Jaton JC
    J Biol Chem; 1986 Dec; 261(35):16673-81. PubMed ID: 3782136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High and low molecular weight rabbit secretory components. Evidence for the deletion of the second and third domains in the smaller polypeptide.
    Frutiger S; Hughes GJ; Fonck C; Jaton JC
    J Biol Chem; 1987 Feb; 262(4):1712-5. PubMed ID: 3805050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of bovine secretory component.
    Beale D
    Vet Immunol Immunopathol; 1987 Dec; 17(1-4):37-49. PubMed ID: 3433666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive half-cystine peptides of the secretory component of human exocrine immunoglobulin A.
    Cunningham-Rundles C; Lamm ME
    J Biol Chem; 1975 Mar; 250(6):1987-91. PubMed ID: 1090614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thiol groups of mouse immunoglobulin A. Incomplete formation of the C alpha 1-domain disulphide bridge.
    Cockle SA; Young NM
    Biochem J; 1985 Jan; 225(1):113-25. PubMed ID: 3977821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragments of bovine serum albumin produced by limited proteolysis. Isolation and characterization of tryptic fragments.
    Peters T; Feldhoff RC
    Biochemistry; 1975 Jul; 14(15):3384-91. PubMed ID: 1096943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiochemical characterization of proteolytic cleavage fragments of bovine colostral immunoglobulin G1 (IgG1).
    Fang WD; Mukkur TK
    Biochem J; 1976 Apr; 155(1):25-30. PubMed ID: 779768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary structure of human plasma fibronectin. The 29,000-dalton NH2-terminal domain.
    Garcia-Pardo A; Pearlstein E; Frangione B
    J Biol Chem; 1983 Oct; 258(20):12670-4. PubMed ID: 6630202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residues Cys-1 and Cys-79 are not essential for refolding of reduced-denatured kringle 4 fragment of human plasminogen.
    Trexler M; Patthy L
    Biochim Biophys Acta; 1984 Jun; 787(3):275-80. PubMed ID: 6329306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of human secretory component by affinity chromatography on IgM-sepharose.
    Underdown BJ; DeRose J; Koczekan K; Socken D; Weicker J
    Immunochemistry; 1977 Feb; 14(2):111-8. PubMed ID: 852885
    [No Abstract]   [Full Text] [Related]  

  • 18. A comparison of the proteolytic fragmentation of immunoglobulin M from several different mammalian species.
    Beale D; Van Dort T
    Comp Biochem Physiol B; 1982; 71(3):475-82. PubMed ID: 6802563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of monoferric fragments obtained by tryptic cleavage of bovine transferrin.
    Brock JH; Arzabe FR; Richardson NE; Deverson EV
    Biochem J; 1978 Apr; 171(1):73-8. PubMed ID: 646825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited enzymatic cleavage of pig immunoglobulin G and of specific antibodies. IV. Characteristics of the tFc' fragment obtained from the S-sulpho derivative of non-specific immunoglobulin G.
    Olsovská Z; Franĕk F
    Folia Biol (Praha); 1984; 30(2):93-103. PubMed ID: 6724051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.