These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3985964)

  • 1. Anti-oxidant/pro-oxidant reactions of vitamin K.
    Canfield LM; Davy LA; Thomas GL
    Biochem Biophys Res Commun; 1985 Apr; 128(1):211-9. PubMed ID: 3985964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin K and energy transduction: a base strength amplification mechanism.
    Dowd P; Hershline R; Ham SW; Naganathan S
    Science; 1995 Sep; 269(5231):1684-91. PubMed ID: 7569894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural prenylquinones inhibit the enzymes of the vitamin K cycle in vitro.
    Ronden JE; Soute BA; Thijssen HH; Saupe J; Vermeer C
    Biochim Biophys Acta; 1996 Nov; 1298(1):87-94. PubMed ID: 8948492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The function and metabolism of vitamin K.
    Olson RE
    Annu Rev Nutr; 1984; 4():281-337. PubMed ID: 6380538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of trifluoromethyl analogs of vitamin K as substrates for the liver microsomal vitamin K-dependent carboxylase.
    Grossman CP; Suttie JW; Taguchi T; Suda Y; Kobayashi Y
    Biofactors; 1988 Oct; 1(3):255-9. PubMed ID: 3256324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin K-dependent carboxylase: evidence for a semiquinone radical intermediate.
    Canfield LM; Ramelow U
    Arch Biochem Biophys; 1984 May; 230(2):389-99. PubMed ID: 6712248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin K epoxide reductase: evidence that vitamin K dihydroquinone is a product of vitamin K epoxide reduction.
    Sherman PA; Sander EG
    Biochem Biophys Res Commun; 1981 Dec; 103(3):997-1005. PubMed ID: 7332587
    [No Abstract]   [Full Text] [Related]  

  • 8. Vitamin K epoxide and quinone reductase activities. Evidence for reduction by a common enzyme.
    Gardill SL; Suttie JW
    Biochem Pharmacol; 1990 Sep; 40(5):1055-61. PubMed ID: 2390102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of vitamin K-dependent carboxylase by metal ions and metal complexes: a reassessment.
    Kanabus-Kaminska JM; Girardot JM
    Arch Biochem Biophys; 1984 Feb; 228(2):646-52. PubMed ID: 6696452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin K-dependent carboxylase. Stoichiometry of vitamin K epoxide formation, gamma-carboxyglutamyl formation, and gamma-glutamyl-3H cleavage.
    Wood GM; Suttie JW
    J Biol Chem; 1988 Mar; 263(7):3234-9. PubMed ID: 2830277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of vitamin K and vitamin K 2,3-epoxide via interaction with a common disulfide.
    Lee JJ; Fasco MJ
    Biochemistry; 1984 May; 23(10):2246-52. PubMed ID: 6733086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamyl substrate-induced exposure of a free cysteine residue in the vitamin K-dependent gamma-glutamyl carboxylase is critical for vitamin K epoxidation.
    Bouchard BA; Furie B; Furie BC
    Biochemistry; 1999 Jul; 38(29):9517-23. PubMed ID: 10413529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition by warfarin enantiomers of prothrombin synthesis, protein carboxylation, and the regeneration of vitamin K from vitamin K epoxide.
    Bell RG; Ren P
    Biochem Pharmacol; 1981 Jul; 30(14):1953-8. PubMed ID: 7271884
    [No Abstract]   [Full Text] [Related]  

  • 14. Vitamin K activity and metabolism of vitamin K-1 epoxide-1,4-diol.
    Bell RG
    J Nutr; 1982 Feb; 112(2):287-92. PubMed ID: 7057266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the vitamins K1, K2 and K3 as cofactors for the hepatic vitamin K-dependent carboxylase.
    Buitenhuis HC; Soute BA; Vermeer C
    Biochim Biophys Acta; 1990 May; 1034(2):170-5. PubMed ID: 2112953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent findings in understanding the biological function of vitamin K.
    Uotila L; Suttie JW
    Med Biol; 1982 Feb; 60(1):16-24. PubMed ID: 6803084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen requirements for vitamin K-dependent carboxylation and epoxide formation.
    Canfield LM
    Biochim Biophys Acta; 1986 Jan; 869(1):112-4. PubMed ID: 3942748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin K1 hydroquinone formation catalyzed by a microsomal reductase system.
    Fasco MJ; Principe LM
    Biochem Biophys Res Commun; 1980 Dec; 97(4):1487-92. PubMed ID: 7213374
    [No Abstract]   [Full Text] [Related]  

  • 19. Vitamin K-dependent carboxylase. Possible role for thioredoxin in the reduction of vitamin K metabolites in liver.
    Johan L; van Haarlem M; Soute BA; Vermeer C
    FEBS Lett; 1987 Oct; 222(2):353-7. PubMed ID: 3308517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hetero-dimer model for concerted action of vitamin K carboxylase and vitamin K reductase in vitamin K cycle.
    Wu S; Liu S; Davis CH; Stafford DW; Kulman JD; Pedersen LG
    J Theor Biol; 2011 Jun; 279(1):143-9. PubMed ID: 21453708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.