These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 3986178)

  • 1. Methyl branching in short-chain lecithins: are both chains important for effective phospholipase A2 activity?
    DeBose CD; Burns RA; Donovan JM; Roberts MF
    Biochemistry; 1985 Mar; 24(6):1298-306. PubMed ID: 3986178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of dialkyl ether lecithins with phospholipase A2 (Naja naja naja).
    DeBose CD; Roberts MF
    J Biol Chem; 1983 May; 258(10):6327-34. PubMed ID: 6687887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric short-chain phosphatidylcholines: defining chain binding constraints in phospholipases.
    Lewis KA; Bian JR; Sweeney A; Roberts MF
    Biochemistry; 1990 Oct; 29(42):9962-70. PubMed ID: 2271632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of phospholipase C (Bacillus cereus) activity to phosphatidylcholine structural modifications.
    el-Sayed MY; DeBose CD; Coury LA; Roberts MF
    Biochim Biophys Acta; 1985 Dec; 837(3):325-35. PubMed ID: 3933566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micellar bolaform and omega-carboxylate phosphatidylcholines as substrates for phospholipases.
    Lewis KA; Soltys CE; Yu K; Roberts MF
    Biochemistry; 1994 May; 33(17):5000-10. PubMed ID: 8172875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis of short-chain phosphatidylcholines by bee venom phospholipase A2.
    Raykova D; Blagoev B
    Toxicon; 1986; 24(8):791-7. PubMed ID: 3775794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural importance of the amino-terminal residue of pancreatic phospholipase A2.
    van Scharrenburg GJ; Jansen EH; Egmond MR; de Haas GH; Slotboom AJ
    Biochemistry; 1984 Dec; 23(25):6285-94. PubMed ID: 6441599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic hydrolysis of short-chain lecithin/long-chain phospholipid unilamellar vesicles: sensitivity of phospholipases to matrix phase state.
    Gabriel NE; Agman NV; Roberts MF
    Biochemistry; 1987 Nov; 26(23):7409-18. PubMed ID: 3122829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 18O isotope exchange experiments on phospholipase A2 determined by 13C-NMR: monomeric phosphatidylcholine and micellar phosphatidylethanolamine substrates.
    Fanni T; Deems RA; Dennis EA
    Biochim Biophys Acta; 1989 Jul; 1004(1):134-8. PubMed ID: 2742867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol solubilization by short-chain lecithins: characterization of mixed micelles and cholesterol oxidase activity.
    Burns RA; Roberts MF
    Biochemistry; 1981 Dec; 20(25):7102-8. PubMed ID: 6947824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific epsilon-NH2 monoacylation of pancreatic phospholipase A2. 2. Transformation of soluble phospholipase A2 into a highly penetrating "membrane-bound" form.
    Van der Wiele FC; Atsma W; Roelofsen B; van Linde M; Van Binsbergen J; Radvanyi F; Raykova D; Slotboom AJ; De Haas GH
    Biochemistry; 1988 Mar; 27(5):1688-94. PubMed ID: 3130102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of phospholipase A2 activity by the lipid-water interface: a monolayer approach.
    Pattus F; Slotboom AJ; de Haas GH
    Biochemistry; 1979 Jun; 18(13):2691-7. PubMed ID: 573135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the catalytic pocket of phospholipases A2 and C using a novel set of phosphatidylcholines.
    Caramelo JJ; Florín-Christensen J; Florín-Christensen M; Delfino JM
    Biochem J; 2000 Mar; 346 Pt 3(Pt 3):679-90. PubMed ID: 10698694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pancreatic phospholipase A2 hydrolysis of phosphatidylcholines in various physicochemical states.
    Nalbone G; Lairon D; Charbonnier-Augeire M; Vigne JL; Leonardi J; Chabert C; Hauton JC; Verger R
    Biochim Biophys Acta; 1980 Dec; 620(3):612-25. PubMed ID: 7195282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1-Palmitoyl-2-thiopalmitoyl phosphatidylcholine, a highly specific chromogenic substrate of phospholipase A2.
    Balet C; Clingman KA; Hajdu J
    Biochem Biophys Res Commun; 1988 Jan; 150(2):561-7. PubMed ID: 3124835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of phospholipase A2 activity by different lipid-water interfaces.
    Slotboom AJ; van Dam-Mieras MC; de Haas GH
    J Biol Chem; 1977 May; 252(9):2948-51. PubMed ID: 853038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory aspects of mitochondrial phospholipase A2: correlation of hydrolysis rates with substrate configuration as evidenced by 31P-NMR.
    Lenting HB; Nicolay K; van den Bosch H
    Biochim Biophys Acta; 1988 Feb; 958(3):405-15. PubMed ID: 3342248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of prodan-phosphatidylcholine, a new fluorescent probe, and its interactions with pancreatic and snake venom phospholipases A2.
    Hendrickson HS; Dumdei EJ; Batchelder AG; Carlson GL
    Biochemistry; 1987 Jun; 26(12):3697-703. PubMed ID: 3651404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the role of C-1 ester group in Naja naja phospholipase A2-phospholipid interactions using butanetriol-containing phosphatidylcholine analogues.
    Puri V; Arora A; Gupta CM
    Eur J Biochem; 1999 Feb; 259(3):586-91. PubMed ID: 10092841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic characterization of Escherichia coli outer membrane phospholipase A using mixed detergent-lipid micelles.
    Horrevoets AJ; Hackeng TM; Verheij HM; Dijkman R; de Haas GH
    Biochemistry; 1989 Feb; 28(3):1139-47. PubMed ID: 2653433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.