These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3986191)

  • 1. Denaturation behavior of antithrombin in guanidinium chloride. Irreversibility of unfolding caused by aggregation.
    Fish WW; Danielsson A; Nordling K; Miller SH; Lam CF; Björk I
    Biochemistry; 1985 Mar; 24(6):1510-7. PubMed ID: 3986191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-function relationships in heparin cofactor II: chemical modification of arginine and tryptophan and demonstration of a two-domain structure.
    Church FC; Villanueva GB; Griffith MJ
    Arch Biochem Biophys; 1986 Apr; 246(1):175-84. PubMed ID: 3754413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of a two-domain structure of antithrombin III during its denaturation in guanidinium chloride.
    Villanueva GB; Allen N
    J Biol Chem; 1983 Sep; 258(18):11010-3. PubMed ID: 6885810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refolding properties of antithrombin III. Mechanism of binding to heparin.
    Villanueva GB; Allen N
    J Biol Chem; 1983 Nov; 258(22):14048-53. PubMed ID: 6643466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the domain structure of antithrombin III. Tentative localization of the heparin binding region using 1H NMR spectroscopy.
    Gettins P; Wooten EW
    Biochemistry; 1987 Jul; 26(14):4403-8. PubMed ID: 3663595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biphasic transition curve on denaturation of chicken cystatin by guanidinium chloride. Evidence for an independently unfolding structural region.
    Björk I; Pol E
    FEBS Lett; 1992 Mar; 299(1):66-8. PubMed ID: 1544477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guanidinium chloride denaturation of the dimeric Bacillus licheniformis BlaI repressor highlights an independent domain unfolding pathway.
    Vreuls C; Filée P; Van Melckebeke H; Aerts T; De Deyn P; Llabrès G; Matagne A; Simorre JP; Frère JM; Joris B
    Biochem J; 2004 Nov; 384(Pt 1):179-90. PubMed ID: 15285720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biphasic denaturation of human placental alkaline phosphatase in guanidinium chloride.
    Hung HC; Chang GG
    Proteins; 1998 Oct; 33(1):49-61. PubMed ID: 9741844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A.
    Mayo SL; Baldwin RL
    Science; 1993 Nov; 262(5135):873-6. PubMed ID: 8235609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guanidinium chloride- and urea-induced unfolding of the dimeric enzyme glucose oxidase.
    Akhtar MS; Ahmad A; Bhakuni V
    Biochemistry; 2002 Mar; 41(11):3819-27. PubMed ID: 11888301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of an intermediate in the folding of the (beta alpha)8-barrel N-(5'-phosphoribosyl)anthranilate isomerase from Escherichia coli.
    Jasanoff A; Davis B; Fersht AR
    Biochemistry; 1994 May; 33(20):6350-5. PubMed ID: 8193151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low concentrations of guanidinium chloride expose apolar surfaces and cause differential perturbation in catalytic intermediates of rhodanese.
    Horowitz P; Criscimagna NL
    J Biol Chem; 1986 Nov; 261(33):15652-8. PubMed ID: 3465722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrina caffra trypsin inhibitor retains its native structure and function after reducing its disulfide bonds.
    Lehle K; Wrba A; Jaenicke R
    J Mol Biol; 1994 Jun; 239(2):276-84. PubMed ID: 8196058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guanidinium chloride- and urea-induced unfolding of FprA, a mycobacterium NADPH-ferredoxin reductase: stabilization of an apo-protein by GdmCl.
    Shukla N; Bhatt AN; Aliverti A; Zanetti G; Bhakuni V
    FEBS J; 2005 May; 272(9):2216-24. PubMed ID: 15853806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The detection of kinetic intermediate(s) during refolding of rhodanese.
    Tandon S; Horowitz PM
    J Biol Chem; 1990 Apr; 265(11):5967-70. PubMed ID: 2318842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The burst-phase intermediate in the refolding of beta-lactoglobulin studied by stopped-flow circular dichroism and absorption spectroscopy.
    Kuwajima K; Yamaya H; Sugai S
    J Mol Biol; 1996 Dec; 264(4):806-22. PubMed ID: 8980687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guanidine hydrochloride unfolding of peptide helices: separation of denaturant and salt effects.
    Smith JS; Scholtz JM
    Biochemistry; 1996 Jun; 35(22):7292-7. PubMed ID: 8679559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Denaturation of phosphofructokinase-1 from Saccharomyces cerevisiae by guanidinium chloride and reconstitution of the unfolded subunits to their catalytically active form.
    Bär J; Golbik R; Hübner G; Kopperschläger G
    Biochemistry; 2000 Jun; 39(23):6960-8. PubMed ID: 10841778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The conformational properties of human plasma apolipoprotein C-II. A spectroscopic study.
    Mantulin WW; Rohde MF; Gotto AM; Pownall HJ
    J Biol Chem; 1980 Sep; 255(17):8185-91. PubMed ID: 7410358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.