These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 3986198)

  • 1. Kinetic studies of human erythrocyte membrane resealing.
    Lee B; McKenna K; Bramhall J
    Biochim Biophys Acta; 1985 Apr; 815(1):128-34. PubMed ID: 3986198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resealing of erythrocyte membranes after hypotonic hemolysis.
    Kanda S; Inoue K; Nojima S
    Jpn J Exp Med; 1979 Aug; 49(4):251-6. PubMed ID: 502081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kinetics of resealing of washed erythrocyte ghosts.
    Johnson RM
    J Membr Biol; 1975 Jul; 22(3-4):231-53. PubMed ID: 808630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of resealing ability in erythrocyte membranes. Effect of divalent cations and spectrin release.
    Johnson RM; Kirkwood DH
    Biochim Biophys Acta; 1978 May; 509(1):58-66. PubMed ID: 647009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-dependent lipid lateral phase separation as a mechanism of human erythrocyte ghost resealing.
    Minetti M; Ceccarini M
    J Cell Biochem; 1982; 19(1):59-75. PubMed ID: 6181083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship of hemolysis buffer structure, pH and ionic strength to spontaneous contour smoothing of isolated erythrocyte membranes.
    Raval PJ; Carter DP; Fairbanks G
    Biochim Biophys Acta; 1989 Aug; 983(2):230-40. PubMed ID: 2758059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General and transport properties of hypotonic and isotonic preparations of resealed erythrocyte ghosts.
    Jausel-Hüsken S; Deuticke B
    J Membr Biol; 1981; 63(1-2):61-70. PubMed ID: 7310852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of preparative procedures on the volume and content of resealed red cell ghosts.
    Nash GB; Meiselman HJ
    Biochim Biophys Acta; 1985 May; 815(3):477-85. PubMed ID: 3995036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures.
    Krueger M; Thom F
    Biophys J; 1997 Nov; 73(5):2653-66. PubMed ID: 9370459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Thermal transitions in erythrocyte membranes revealed by their permeability to ANS].
    Chernitskiĭ EA; Vorobeĭ AV; Konev SV
    Biofizika; 1978; 23(1):80-4. PubMed ID: 623828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeability characteristics of erythrocyte ghosts prepared under isoionic conditions by a glycol-induced osmotic lysis.
    Billah MM; Finean JB; Coleman R; Michell RH
    Biochim Biophys Acta; 1977 Mar; 465(3):515-26. PubMed ID: 13834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal and homogeneous red blood cell populations over a wide range of hyper-iso-hypotonic media. III. Corrected volumes in Coulter Counter measurements.
    Mela M; Eskelinen S
    Acta Physiol Scand; 1984 Dec; 122(4):515-25. PubMed ID: 6524394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible and irreversible modification of erythrocyte membrane permeability by electric field.
    Serpersu EH; Kinosita K; Tsong TY
    Biochim Biophys Acta; 1985 Feb; 812(3):779-85. PubMed ID: 3970906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resealing of electrically hemolysed rat & human erythrocytes.
    Mishra KP; Bedekar VW; Singh BB
    Indian J Exp Biol; 1983 Dec; 21(12):641-3. PubMed ID: 6678220
    [No Abstract]   [Full Text] [Related]  

  • 15. Cation permeability and mechanical properties of the erythrocyte membrane under the influence of lysophosphatidylcholine (LPC) in isotonic and hypotonic media.
    Eskelinen S; Mela M
    Acta Physiol Scand; 1984 Dec; 122(4):527-34. PubMed ID: 6524395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of lysophosphatidylcholine on salt permeability through the erythrocyte membrane under haemolytic conditions.
    Eskelinen S
    Gen Physiol Biophys; 1986 Dec; 5(6):637-47. PubMed ID: 3557104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of osmotic lysis and resealing on red cell structure and function.
    Scott MD; Kuypers FA; Butikofer P; Bookchin RM; Ortiz OE; Lubin BH
    J Lab Clin Med; 1990 Apr; 115(4):470-80. PubMed ID: 1691257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent modes for the binding of the polyene antibiotic amphotericin B to human erythrocyte membranes. A circular dichroism study.
    Szponarski W; Bolard J
    Biochim Biophys Acta; 1987 Feb; 897(2):229-37. PubMed ID: 3814589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore resealing inactivation in electroporated erythrocyte membrane irradiated with electrons.
    Neamtu S; Morariu VV; Turcu I; Popescu AH; Copăescu LI
    Bioelectrochem Bioenerg; 1999 May; 48(2):441-5. PubMed ID: 10379566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of membrane thermotropic properties on hypotonic hemolysis and hypertonic cryohemolysis of human red blood cells.
    Minetti M; Ceccarini M; Di Stasi AM
    J Cell Biochem; 1984; 25(2):61-72. PubMed ID: 6090481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.