These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3986201)

  • 21. Dipeptide metalloendoprotease substrates are glucose transport inhibitors and membrane structure perturbants.
    Aiello LP; Wessling-Resnick M; Pilch PF
    Biochemistry; 1986 Jul; 25(13):3944-50. PubMed ID: 3527260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ATP-dependent calcium transport across basal plasma membranes of human placental trophoblast.
    Fisher GJ; Kelley LK; Smith CH
    Am J Physiol; 1987 Jan; 252(1 Pt 1):C38-46. PubMed ID: 2949624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and partial characterization of the basal cell membrane of human placental trophoblast.
    Kelley LK; Smith CH; King BF
    Biochim Biophys Acta; 1983 Sep; 734(1):91-8. PubMed ID: 6615829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport.
    Huang X; Lüthi M; Ontsouka EC; Kallol S; Baumann MU; Surbek DV; Albrecht C
    Mol Hum Reprod; 2016 Jun; 22(6):442-56. PubMed ID: 26931579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATP independent calcium transport and binding by basal plasma membrane of human placenta.
    Kamath SG; Haider N; Smith CH
    Placenta; 1994; 15(2):147-55. PubMed ID: 8008730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Placental amino acid transport.
    Moe AJ
    Am J Physiol; 1995 Jun; 268(6 Pt 1):C1321-31. PubMed ID: 7611349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation of two distinct Na+/D-glucose cotransport systems in the human fetal jejunum by means of their differential specificity for 3-O-methylglucose.
    Malo C
    Biochim Biophys Acta; 1990 Feb; 1022(1):8-16. PubMed ID: 2302406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human placental L-tyrosine transport: a comparison of brush-border and basal membrane vesicles.
    Kudo Y; Boyd CA
    J Physiol; 1990 Jul; 426():381-95. PubMed ID: 2231404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells.
    Mullin JM; Kofeldt LM; Russo LM; Hagee MM; Dantzig AH
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F480-7. PubMed ID: 1558165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Placental transport of carbohydrates.
    Bissonnette JM
    Mead Johnson Symp Perinat Dev Med; 1981; (18):21-3. PubMed ID: 7043112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequential preparation of highly purified microvillous and basal syncytiotrophoblast membranes in substantial yield from a single term human placenta: inhibition of microvillous alkaline phosphatase activity by EDTA.
    Eaton BM; Oakey MP
    Biochim Biophys Acta; 1994 Jul; 1193(1):85-92. PubMed ID: 8038198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and purification of human placental plasma membranes from normal and pre-eclamptic pregnancies. a comparative study.
    Jimenez V; Henriquez M; Llanos P; Riquelme G
    Placenta; 2004 May; 25(5):422-37. PubMed ID: 15081637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of glucose transport across the microvillous membranes of human term placenta.
    Kaur Anand R; Kanwar U; Nath Sanyal S
    Nutr Hosp; 2006; 21(1):38-46. PubMed ID: 16562811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of amino acid transport systems in human placental basal membrane vesicles.
    Kudo Y; Boyd CA
    Biochim Biophys Acta; 1990 Jan; 1021(2):169-74. PubMed ID: 2302394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity.
    Mühlbacher C; Karnieli E; Schaff P; Obermaier B; Mushack J; Rattenhuber E; Häring HU
    Biochem J; 1988 Feb; 249(3):865-70. PubMed ID: 3281656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunolocalization of glucose transporter GLUT1 in the rat placental barrier: possible role of GLUT1 and the gap junction in the transport of glucose across the placental barrier.
    Takata K; Kasahara T; Kasahara M; Ezaki O; Hirano H
    Cell Tissue Res; 1994 Jun; 276(3):411-8. PubMed ID: 8062336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Placental transfer of glucose and amino acids in intrauterine growth retardation: studies with substrate analogs in the awake guinea pig.
    Jansson T; Persson E
    Pediatr Res; 1990 Sep; 28(3):203-8. PubMed ID: 2235115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATP-dependent Ca2+ transport is up-regulated during third trimester in human syncytiotrophoblast basal membranes.
    Strid H; Powell TL
    Pediatr Res; 2000 Jul; 48(1):58-63. PubMed ID: 10879801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rat testis and epididymis can transport [3H] 3-O-methyl-D-glucose, [3H] inositol and [3H] alpha-aminoisobutyric acid across its epithelia in vivo.
    Hinton BT; Howards SS
    Biol Reprod; 1982 Dec; 27(5):1181-9. PubMed ID: 7159662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.