BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3986216)

  • 21. DNA damage by 5-aminolevulinic and 4,5-dioxovaleric acids in the presence of ferritin.
    Di Mascio P; Teixeira PC; Onuki J; Medeiros MH; Dörnemann D; Douki T; Cadet J
    Arch Biochem Biophys; 2000 Jan; 373(2):368-74. PubMed ID: 10620361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of L-alanine: 4,5-dioxovalerate transaminase in chlorophyll synthesis in Bajra (Pennisetum typhoideum) seedlings.
    Prasad DD; Prasad AR
    Biochem Int; 1990 Aug; 21(5):857-65. PubMed ID: 2256948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversal of the reaction catalyzed by glyoxalase I. Calculation of the equilibrium constant for the enzymatic reaction.
    Sellin S; Mannervik B
    J Biol Chem; 1983 Jul; 258(14):8872-5. PubMed ID: 6863314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of glyoxalase, glutathione peroxidase and glutathione S-transferase isoenzymes in different bovine tissues.
    Hayes JD; Milner SW; Walker SW
    Biochim Biophys Acta; 1989 Jan; 994(1):21-9. PubMed ID: 2909253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of mammalian glyoxalase I (lactoylglutathione lyase) by N-acylated S-blocked glutathione derivatives as a probe for the role of the N-site of glutathione in glyoxalase I mechanism.
    Al-Timari A; Douglas KT
    Biochim Biophys Acta; 1986 Mar; 870(1):160-8. PubMed ID: 3947646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro translocation of L-alanine:4,5-dioxovalerate transaminase into rat kidney mitochondria.
    Tyagi RK; Datta K
    J Biochem; 1993 May; 113(5):557-62. PubMed ID: 7687993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. delta-Aminolevulinic Acid Transaminase in Chlorella vulgaris.
    Gassman M; Pluscec J; Bogorad L
    Plant Physiol; 1968 Sep; 43(9):1411-4. PubMed ID: 16656929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chicken eggshell porphyrins and the glyoxalase pathway: its possible physiological role.
    van Brummelen R; Bissbort S
    Comp Biochem Physiol B; 1993 Apr; 104(4):657-62. PubMed ID: 8472535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolism of 2-ketoaldehydes in mold: purification and characterization of glyoxalase I from Aspergillus niger.
    Inoue Y; Rhee H; Watanabe K; Murata K; Kimura A
    J Biochem; 1987 Sep; 102(3):583-9. PubMed ID: 3123469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A glyoxalase I inhibitor of a new structural type produced by Streptomyces.
    Takeuchi T; Chimura H; Hamada M; Umezawa H; Yoshioka O
    J Antibiot (Tokyo); 1975 Oct; 28(10):737-42. PubMed ID: 1102510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA alkylation by 4,5-dioxovaleric acid, the final oxidation product of 5-aminolevulinic acid.
    Douki T; Onuki J; Medeiros MH; Bechara EJ; Cadet J; Di Mascio P
    Chem Res Toxicol; 1998 Feb; 11(2):150-7. PubMed ID: 9511907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of glyoxalase I purified from pig erythrocytes by affinity chromatography.
    Aronsson AC; Mannervik B
    Biochem J; 1977 Sep; 165(3):503-9. PubMed ID: 921763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partial transition-state inhibitors of glyoxalase I from human erythrocytes, yeast and rat liver.
    Douglas KT; Gohel DI; Nadvi IN; Quilter AJ; Seddon AP
    Biochim Biophys Acta; 1985 May; 829(1):109-18. PubMed ID: 3888271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. N,S-bis-fluorenylmethoxycarbonylglutathione: a new, very potent inhibitor of mammalian glyoxalase II.
    Elia AC; Chyan MK; Principato GB; Giovannini E; Rosi G; Norton SJ
    Biochem Mol Biol Int; 1995 Apr; 35(4):763-71. PubMed ID: 7627127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conversion of 5-aminolaevulinate into haem by homogenates of human liver. Comparison with rat and chick-embryo liver homogenates.
    Bonkovsky HL; Healey JF; Sinclair PR; Sinclair JF
    Biochem J; 1985 May; 227(3):893-901. PubMed ID: 4004804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. delta-Aminolevulinic Acid Formation from gamma,delta-Dioxovaleric Acid in Extracts of Euglena gracilis.
    Foley T; Beale SI
    Plant Physiol; 1982 Nov; 70(5):1495-502. PubMed ID: 16662704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis.
    Shinohara M; Thornalley PJ; Giardino I; Beisswenger P; Thorpe SR; Onorato J; Brownlee M
    J Clin Invest; 1998 Mar; 101(5):1142-7. PubMed ID: 9486985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genotoxicity of 5-aminolevulinic and 4,5-dioxovaleric acids in the salmonella/microsuspension mutagenicity assay and SOS chromotest.
    Onuki J; Rech CM; Medeiros MH; de A Umbuzeiro G; Di Mascio P
    Environ Mol Mutagen; 2002; 40(1):63-70. PubMed ID: 12211078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modification of the glyoxalase system in human red blood cells by glucose in vitro.
    Thornalley PJ
    Biochem J; 1988 Sep; 254(3):751-5. PubMed ID: 3196289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new biosynthetic route of porphyrin precursors in common between animals and plants.
    Okuno E; Minatogawa Y; Kido R
    Biochem Biophys Res Commun; 1983 May; 112(3):986-90. PubMed ID: 6342621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.