BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3986216)

  • 41. Excess generation of endogenous heme inhibits L-alanine:4,5-dioxovalerate transaminase in rat liver mitochondria.
    Shanker J; Datta K
    Biochem Biophys Res Commun; 1986 Jul; 138(2):751-7. PubMed ID: 3741431
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of glyoxalase I purified from yeast (Saccharomyces cerevisiae) with the enzyme from mammalian sources.
    Marmstål E; Aronsson AC; Mannervik B
    Biochem J; 1979 Oct; 183(1):23-30. PubMed ID: 393249
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mutagenesis of residue 157 in the active site of human glyoxalase I.
    Ridderström M; Cameron AD; Jones TA; Mannervik B
    Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):231-5. PubMed ID: 9359858
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of ascorbic and dehydroascorbic acid on glyoxalase enzyme system.
    Liotti FS; Principato GB; Talesa V
    Int J Vitam Nutr Res; 1985; 55(2):193-5. PubMed ID: 4019075
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modification of the glyoxalase system in human HL60 promyelocytic leukaemia cells during differentiation to neutrophils in vitro.
    Hooper NI; Tisdale MJ; Thornalley PJ
    Biochim Biophys Acta; 1988 Sep; 966(3):362-9. PubMed ID: 3166382
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The isolation and characterization of mouse liver glyoxalase I.
    Kester MV; Norton SJ
    Biochim Biophys Acta; 1975 May; 391(1):212-21. PubMed ID: 1138914
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Further studies on liver glyoxalase I and glyoxalase II. Activity in mice bearing sarcoma 180 and L1210 leukemia.
    Winter R; Piskorska D; Jerzykowski T
    Neoplasma; 1978; 25(4):465-70. PubMed ID: 692805
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modification of the glyoxalase system during the functional activation of human neutrophils.
    Thornalley PJ; Bellavite P
    Biochim Biophys Acta; 1987 Nov; 931(2):120-9. PubMed ID: 3663711
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glutamate:4,5-dioxovaleric acid transaminase from Euglena gracilis. Kinetic studies.
    Lombardo ME; Araujo LS; Juknat AA; Batlle AM
    Eur J Biochem; 1989 Jul; 182(3):657-60. PubMed ID: 2502394
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conversion of 5-aminolaevulinate into haem by liver homogenates. Comparison of rat and chick embryo.
    Healey JF; Bonkowsky HL; Sinclair PR; Sinclair JF
    Biochem J; 1981 Sep; 198(3):595-604. PubMed ID: 7326026
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enzymatic degradation of succinyl-coenzyme A by rat liver homogenates.
    Minaga T; Sharma ML; Kun E; Piper WN
    Biochim Biophys Acta; 1978 Feb; 538(3):417-25. PubMed ID: 23860
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and some properties of L-alanine:4,5-dioxovaleric acid transaminase from rat liver mitochondria.
    Shanker J; Datta K
    Biochem Int; 1983 Jul; 7(1):23-31. PubMed ID: 6679336
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Formation of 5-aminolevulinate via glutamate-1-semialdehyde and 4,5-dioxovalerate with participation of an RNA component in Scenedesmus obliquus mutant C-2A'.
    Breu V; Dörnemann D
    Biochim Biophys Acta; 1988 Nov; 967(2):135-40. PubMed ID: 2461227
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems.
    Mahmud JA; Hasanuzzaman M; Nahar K; Bhuyan MHMB; Fujita M
    Ecotoxicol Environ Saf; 2018 Jan; 147():990-1001. PubMed ID: 29976011
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of vanadium in green plants. IV. Influence on the formation of delta-aminolevulinic acid in Chlorella.
    Méisch HU; Bauer J
    Arch Microbiol; 1978 Apr; 117(1):49-52. PubMed ID: 28098
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Induction of mouse liver glyoxalase I by hypobaric hypoxia.
    Principato GB; Talesa V; Norton SJ; Contenti S; Mangiabene C; Rosi G
    Biochem Int; 1990; 20(6):1019-23. PubMed ID: 2369408
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The enantioselective participation of (S)- and (R)-diaminovaleric acids in the formation of delta-aminolevulinic acid in cyanobacteria.
    Friedmann HC; Duban ME; Valasinas A; Frydman B
    Biochem Biophys Res Commun; 1992 May; 185(1):60-8. PubMed ID: 1599490
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of reductones on glyoxalase I1.
    Iio M; Okabe K; Omura H
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(1):53-61. PubMed ID: 784919
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation of glyoxalase II from bovine liver mitochondria.
    Talesa V; Principato GB; Norton SJ; Contenti S; Mangiabene C; Rosi G
    Biochem Int; 1990; 20(1):53-8. PubMed ID: 2328024
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ni2+-activated glyoxalase I from Escherichia coli: substrate specificity, kinetic isotope effects and evolution within the βαβββ superfamily.
    Mullings KY; Sukdeo N; Suttisansanee U; Ran Y; Honek JF
    J Inorg Biochem; 2012 Mar; 108():133-40. PubMed ID: 22173092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.