These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3986300)

  • 1. Relationship between total body clearance of caffeine and urine flow rate in elderly men.
    Trang JM; Blanchard J; Conrad KA; Harrison GG
    Biopharm Drug Dispos; 1985; 6(1):51-6. PubMed ID: 3986300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between urine flow rate and renal clearance of caffeine in man.
    Blanchard J; Sawers SJ
    J Clin Pharmacol; 1983 Apr; 23(4):134-8. PubMed ID: 6863577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caffeine as a probe for CYP1A2 activity: potential influence of renal factors on urinary phenotypic trait measurements.
    Tang BK; Zhou Y; Kadar D; Kalow W
    Pharmacogenetics; 1994 Jun; 4(3):117-24. PubMed ID: 7920691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Association between Urine Caffeine Metabolites and Urine Flow Rate: A Cross-Sectional Study.
    Wu SE; Chen WL
    Nutrients; 2020 Sep; 12(9):. PubMed ID: 32933151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theophylline has no advantages over caffeine as a putative model drug for assessing CYPIA2 activity in humans.
    Rasmussen BB; Brøsen K
    Br J Clin Pharmacol; 1997 Mar; 43(3):253-8. PubMed ID: 9088579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pharmacokinetics, metabolism and urinary detection time of caffeine in camels.
    Wasfi IA; Boni NS; Elghazali M; Abdel Hadi AA; Almuhrami AM; Barezaig IM; Alkatheeri NA
    Res Vet Sci; 2000 Aug; 69(1):69-74. PubMed ID: 10924397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Assessment of the Effect of Chronic Kidney Disease on the Nonrenal Clearance of 10 Drugs After Intravenous Administration.
    Hinderling PH; Yu Y
    Clin Pharmacol Drug Dev; 2019 Feb; 8(2):138-151. PubMed ID: 30589517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of acute falciparum malaria on the disposition of caffeine and the comparison of saliva and plasma-derived pharmacokinetic parameters in adult Nigerians.
    Akinyinka OO; Sowunmi A; Honeywell R; Renwick AG
    Eur J Clin Pharmacol; 2000 May; 56(2):159-65. PubMed ID: 10877011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of paraxanthine on FFA mobilization after intravenous caffeine administration in humans.
    Hetzler RK; Knowlton RG; Somani SM; Brown DD; Perkins RM
    J Appl Physiol (1985); 1990 Jan; 68(1):44-7. PubMed ID: 2312486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the urinary metabolite profile of caffeine in young and elderly males.
    Blanchard J; Sawers SJ; Jonkman JH; Tang-Liu DD
    Br J Clin Pharmacol; 1985 Feb; 19(2):225-32. PubMed ID: 3986081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caffeine renal clearance and urine caffeine concentrations during steady state dosing. Implications for monitoring caffeine intake during sports events.
    Birkett DJ; Miners JO
    Br J Clin Pharmacol; 1991 Apr; 31(4):405-8. PubMed ID: 2049248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of caffeine exposure: caffeine content of beverages, caffeine intake, and plasma concentrations of methylxanthines.
    Lelo A; Miners JO; Robson R; Birkett DJ
    Clin Pharmacol Ther; 1986 Jan; 39(1):54-9. PubMed ID: 3943270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disposition of caffeine and its metabolites in man.
    Tang-Liu DD; Williams RL; Riegelman S
    J Pharmacol Exp Ther; 1983 Jan; 224(1):180-5. PubMed ID: 6848742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative pharmacokinetics of caffeine and its primary demethylated metabolites paraxanthine, theobromine and theophylline in man.
    Lelo A; Birkett DJ; Robson RA; Miners JO
    Br J Clin Pharmacol; 1986 Aug; 22(2):177-82. PubMed ID: 3756065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative pharmacokinetics of caffeine and three metabolites in clinically normal horses and donkeys.
    Peck K; Mealey KL; Matthews NS; Taylor TS
    Am J Vet Res; 1997 Aug; 58(8):881-4. PubMed ID: 9256975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of renal and non-renal clearance on increased total clearance of adalimumab in glomerular disease.
    Roberts BV; Susano I; Gipson DS; Trachtman H; Joy MS
    J Clin Pharmacol; 2013 Sep; 53(9):919-24. PubMed ID: 23813330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caffeine and its dimethylxanthine metabolites in two cases of caffeine overdose: a cause of falsely elevated theophylline concentrations in serum.
    Fligner CL; Opheim KE
    J Anal Toxicol; 1988; 12(6):339-43. PubMed ID: 3072449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of urine caffeine metabolite ratios with use of stable isotope-labeled caffeine clearance.
    Denaro CP; Wilson M; Jacob P; Benowitz NL
    Clin Pharmacol Ther; 1996 Mar; 59(3):284-96. PubMed ID: 8653991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of caffeine and theophylline in rats with malaria and endotoxin-induced fever.
    Kokwaro GO; Szwandt IS; Glazier AP; Ward SA; Edwards G
    Xenobiotica; 1993 Dec; 23(12):1391-7. PubMed ID: 8135041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Teratogenicity of paraxanthine (1,7-dimethylxanthine) in C57BL/6J mice.
    York RG; Randall JL; Scott WJ
    Teratology; 1986 Dec; 34(3):279-82. PubMed ID: 3798364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.