BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3986592)

  • 21. Structure and function of the adult inner ear in the mouse following prenatal irradiation.
    Hultcrantz M
    Scand Audiol Suppl; 1985; 24():1-24. PubMed ID: 3879375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution of calcium binding proteins in sensory organs of the ear, nose and throat.
    Yamagishi M; Ishizuka Y; Fujiwara M; Nakamura H; Igarashi S; Nakano Y; Kuwano R
    Acta Otolaryngol Suppl; 1993; 506():85-9. PubMed ID: 8256606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The development of the olfactory mucosa in the mouse: light microscopy.
    Cuschieri A; Bannister LH
    J Anat; 1975 Apr; 119(Pt 2):277-86. PubMed ID: 1133096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of removal of the statoacoustic ganglion complex upon the growing otocyst.
    Van De Water TR
    Ann Otol Rhinol Laryngol; 1976; 85(6 Suppl 33 Pt 2):2-31. PubMed ID: 999150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Projection of septal organ receptor neurons to the main olfactory bulb in rats.
    Pedersen PE; Benson TE
    J Comp Neurol; 1986 Oct; 252(4):555-62. PubMed ID: 3782515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localization and regulation of low affinity nerve growth factor receptor expression in the rat olfactory system during development and regeneration.
    Gong Q; Bailey MS; Pixley SK; Ennis M; Liu W; Shipley MT
    J Comp Neurol; 1994 Jun; 344(3):336-48. PubMed ID: 8063958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Embryogenesis of the inner ear. I. Development and differentiation of the mammalian crista ampullaris in vivo and in vitro.
    Anniko M; Nordemar H; Van De Water TR
    Arch Otorhinolaryngol; 1979; 224(3-4):285-99. PubMed ID: 526189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aspects of vitamin A metabolism in sensory epithelia (inner ear, olfactory bulbus, pineal gland).
    Biesalski HK
    Int J Vitam Nutr Res Suppl; 1985; 27():225-45. PubMed ID: 3926697
    [No Abstract]   [Full Text] [Related]  

  • 29. Calbindin (CaBP 28 kDa) appearance and distribution during development of the mouse inner ear.
    Dechesne CJ; Thomasset M
    Brain Res; 1988 May; 468(2):233-42. PubMed ID: 3260120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunolocalization of G protein α subunits in the olfactory system of Polypterus senegalus (Cladistia, Actinopterygii).
    Ferrando S; Gallus L; Gambardella C; Amaroli A; Vallarino M; Tagliafierro G
    Neurosci Lett; 2011 Jul; 499(2):127-31. PubMed ID: 21651958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of temporal and spatial patterns of rat vestibular hair cell differentiation by tritiated thymidine radioautography.
    Sans A; Chat M
    J Comp Neurol; 1982 Mar; 206(1):1-8. PubMed ID: 6124561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris.
    Su Z; Chen J; Qiu Y; Yuan Y; Zhu F; Zhu Y; Liu X; Pu Y; He C
    Glia; 2013 Apr; 61(4):490-503. PubMed ID: 23339073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear.
    Radde-Gallwitz K; Pan L; Gan L; Lin X; Segil N; Chen P
    J Comp Neurol; 2004 Sep; 477(4):412-21. PubMed ID: 15329890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SoxC transcription factors are essential for the development of the inner ear.
    Gnedeva K; Hudspeth AJ
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):14066-71. PubMed ID: 26504244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin alpha8beta1.
    Littlewood Evans A; Müller U
    Nat Genet; 2000 Apr; 24(4):424-8. PubMed ID: 10742111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia.
    Kirjavainen A; Sulg M; Heyd F; Alitalo K; Ylä-Herttuala S; Möröy T; Petrova TV; Pirvola U
    Dev Biol; 2008 Oct; 322(1):33-45. PubMed ID: 18652815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protective effects of melatonin and selenium against apoptosis of olfactory sensory neurons: A rat model study.
    Koc S; Cayli S; Aksakal C; Ocakli S; Soyalic H; Somuk BT; Yüce S
    Am J Rhinol Allergy; 2016 May; 30(3):62-6. PubMed ID: 27216337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signaling regulating inner ear development: cell fate determination, patterning, morphogenesis, and defects.
    Nakajima Y
    Congenit Anom (Kyoto); 2015 Feb; 55(1):17-25. PubMed ID: 25040109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst.
    Fujimoto C; Ozeki H; Uchijima Y; Suzukawa K; Mitani A; Fukuhara S; Nishiyama K; Kurihara Y; Kondo K; Aburatani H; Kaga K; Yamasoba T; Kurihara H
    J Comp Neurol; 2010 Dec; 518(23):4702-22. PubMed ID: 20963824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interspecific variations of inner ear structure in the deep-sea fish family melamphaidae.
    Deng X; Wagner HJ; Popper AN
    Anat Rec (Hoboken); 2013 Jul; 296(7):1064-82. PubMed ID: 23625740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.