BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3986669)

  • 1. A statistical comparison of parameter estimation for the Michaelis-Menten kinetics of human placental hexosaminidase.
    Tommasini R; Endrenyi L; Taylor PA; Mahuran DJ; Lowden JA
    Can J Biochem Cell Biol; 1985 Mar; 63(3):225-30. PubMed ID: 3986669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of the isozymes of human placental hexosaminidase by kinetic parameter estimation.
    Tommasini R; Mahuran DJ; Lowden JA
    Can J Biochem Cell Biol; 1985 Mar; 63(3):219-24. PubMed ID: 3986668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot andother methods.
    Cornish-Bowden A; Eisenthal R
    Biochem J; 1974 Jun; 139(3):721-30. PubMed ID: 4854389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear parameter estimation of rational biokinetic functions.
    Doeswijk TG; Keesman KJ
    Water Res; 2009 Jan; 43(1):107-16. PubMed ID: 19004464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparison of procedures for determining Michaelis-Menten parameters together with their standard deviations using simulated measurement series].
    Hoppe H; Cumme GA
    Acta Biol Med Ger; 1978; 37(8):1177-84. PubMed ID: 749454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can you trust the parametric standard errors in nonlinear least squares? Yes, with provisos.
    Tellinghuisen J
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):886-894. PubMed ID: 29289616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables.
    Liao F; Zhu XY; Wang YM; Zuo YP
    J Biochem Biophys Methods; 2005 Jan; 62(1):13-24. PubMed ID: 15656940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of statistic estimates of kinetic parameters from substrate uncompetitive inhibition equation using the median method.
    Valencia PL; Astudillo-Castro C; Gajardo D; Flores S
    Data Brief; 2017 Apr; 11():567-571. PubMed ID: 28349104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters.
    Eisenthal R; Cornish-Bowden A
    Biochem J; 1974 Jun; 139(3):715-20. PubMed ID: 4854723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of methods for estimating the kinetic parameters of two simple types of transport process.
    Atkins GL
    Biochim Biophys Acta; 1983 Jul; 732(2):455-63. PubMed ID: 6871209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved non-parametric statistical methods for the estimation of Michaelis-Menten kinetic parameters by the direct linear plot.
    Porter WR; Trager WF
    Biochem J; 1977 Feb; 161(2):293-302. PubMed ID: 849264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The computation of saturable and linear components of intestinal and other transport kinetics.
    Atkins GL; Gardner ML
    Biochim Biophys Acta; 1977 Jul; 468(1):127-45. PubMed ID: 884081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Determination of enzyme kinetic parameters and differentiation between various mechanisms by means of a non-linear least squares method].
    Haerlin R; Steinijans V
    Arzneimittelforschung; 1978; 28(2):292-7. PubMed ID: 580396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of various estimation methods for the parameters of Michaelis-Menten equation based on
    Cho YS; Lim HS
    Transl Clin Pharmacol; 2018 Mar; 26(1):39-47. PubMed ID: 32055546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the best-fit values of kinetic parameters of the Michaelis-Menten equation by the method of least squares with the Taylor expansion.
    Sakoda M; Hiromi K
    J Biochem; 1976 Sep; 80(3):547-55. PubMed ID: 977553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of hexosaminidase isozymes in human renal carcinoma.
    Okochi T; Seike H; Higashino K; Hada T; Watanabe S; Yamamura Y; Ito F; Matsuda M; Osafune M; Kotake T; Sonoda T
    Cancer Res; 1979 May; 39(5):1829-34. PubMed ID: 427815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the median method to estimate the kinetic constants of the substrate uncompetitive inhibition equation.
    Valencia PL; Astudillo-Castro C; Gajardo D; Flores S
    J Theor Biol; 2017 Apr; 418():122-128. PubMed ID: 28130095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexosaminidase C in Tay-Sachs and Sandhoff disease.
    Penton E; Poenaru L; Dreyfus JC
    Biochim Biophys Acta; 1975 May; 391(1):162-9. PubMed ID: 237554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new multi-wavelength model-based method for determination of enzyme kinetic parameters.
    Sorouraddin MH; Amini K; Naseri A; Vallipour J; Hanaee J; Rashidi MR
    J Biosci; 2010 Sep; 35(3):395-403. PubMed ID: 20826949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Half-time analysis of the integrated Michaelis equation. Simulation and use of the half-time plot and its direct linear variant in the analysis of some alpha-chymotrypsin, papain- and fumarase-catalysed reactions.
    Wharton CW; Szawelski RJ
    Biochem J; 1982 May; 203(2):351-60. PubMed ID: 7115291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.