These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3986687)

  • 1. After-hyperpolarization and receptor potential attenuation following bursts of action potentials in an insect mechanoreceptor.
    French AS
    Can J Physiol Pharmacol; 1985 Jan; 63(1):18-22. PubMed ID: 3986687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ouabain selectively affects the slow component of sensory adaptation in an insect mechanoreceptor.
    French AS
    Brain Res; 1989 Dec; 504(1):112-4. PubMed ID: 2598005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of calcium in the rapid adaptation of an insect mechanoreceptor.
    French AS
    J Neurosci; 1986 Aug; 6(8):2322-6. PubMed ID: 3091784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic variation of potassium conductance in a burst-generating neurone in Aplysia.
    Junge D; Stephens CL
    J Physiol; 1973 Nov; 235(1):155-81. PubMed ID: 4778133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ouabain augments calcium-dependent potassium conductance in visceral primary afferent neurones of the rabbit.
    Higashi H; Katayama Y; Morita K; North RA
    J Physiol; 1987 Aug; 389():629-45. PubMed ID: 2445981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slowly inactivating outward currents in a cuticular mechanoreceptor neuron of the cockroach (Periplaneta americana).
    Torkkeli PH; French AS
    J Neurophysiol; 1995 Sep; 74(3):1200-11. PubMed ID: 7500144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the ionic mechanisms of adaptation in an isolated mechanoreceptor --an electrophysiological study.
    Swerup C
    Acta Physiol Scand Suppl; 1983; 520():1-43. PubMed ID: 6316733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two components of rapid sensory adaptation in a cockroach mechanoreceptor neuron.
    French AS
    J Neurophysiol; 1989 Sep; 62(3):768-77. PubMed ID: 2549213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones.
    Barrett EF; Barret JN
    J Physiol; 1976 Mar; 255(3):737-74. PubMed ID: 1083431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrogenic pump (Na+/K(+)-ATPase) activity in rat optic nerve.
    Gordon TR; Kocsis JD; Waxman SG
    Neuroscience; 1990; 37(3):829-37. PubMed ID: 2174135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistent calcium-sensitive potassium current and the resting properties of guinea-pig myenteric neurones.
    North RA; Tokimasa T
    J Physiol; 1987 May; 386():333-53. PubMed ID: 2445964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that tolerance and dependence of guinea pig myenteric neurons to opioids is a function of altered electrogenic sodium-potassium pumping.
    Kong JQ; Leedham JA; Taylor DA; Fleming WW
    J Pharmacol Exp Ther; 1997 Feb; 280(2):593-9. PubMed ID: 9023268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of gated membrane currents and mechanisms of firing control in the rapidly adapting lobster stretch receptor neurone.
    Edman A; Gestrelius S; Grampp W
    J Physiol; 1987 Mar; 384():649-69. PubMed ID: 3656158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons.
    Sah P; McLachlan EM
    J Neurophysiol; 1992 Nov; 68(5):1834-41. PubMed ID: 1336045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The action potential and underlying ionic currents in proximal rat middle cerebral arterioles.
    Hirst GD; Silverberg GD; van Helden DF
    J Physiol; 1986 Feb; 371():289-304. PubMed ID: 2422350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-threshold, slow-inactivating Na+ potentials in the cockroach giant axon.
    Yawo H; Kojima H; Kuno M
    J Neurophysiol; 1985 Nov; 54(5):1087-100. PubMed ID: 2416890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping extracellular excitability in an insect mechanoreceptor neuron.
    Torkkeli PH; French AS
    Brain Res; 1993 Dec; 632(1-2):317-20. PubMed ID: 8149237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular citrate or externaly applied tetraethylammonium ions produce calcium-dependent action potentials in an insect motoneurone cell body.
    Pitman RM
    J Physiol; 1979 Jun; 291():327-37. PubMed ID: 480220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic mechanisms underlying depolarizing responses of an identified insect motor neuron to short periods of hypoxia.
    Le Corronc H; Hue B; Pitman RM
    J Neurophysiol; 1999 Jan; 81(1):307-18. PubMed ID: 9914291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.