These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 3986768)

  • 1. Inhibition of DNA ligase from human thymocytes and normal or leukemic lymphocytes by antileukemic drugs.
    David JC; Bassez T; Bonhommet M; Rusquet R
    Cancer Res; 1985 May; 45(5):2177-83. PubMed ID: 3986768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of clinical combinations of antileukemic drugs on DNA ligase from human thymocytes and normal, stimulated, or leukemic lymphocytes.
    Lamballe F; Maniey D; Boscher MY; Fauchet R; le Prise PY; David JC
    Leukemia; 1988 Jun; 2(6):363-70. PubMed ID: 3259660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peplomycin. DNA breakage and in vivo inhibition of DNA polymerases and ligase from human normal and leukemic cells.
    Saulier B; Prigent C; Boutelier R; David JC
    Carcinogenesis; 1988 Jun; 9(6):965-70. PubMed ID: 2453304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of antileukemic agents on the activity of terminal deoxynucleotidyl transferase from human normal thymic and leukemic cells "in vitro".
    Rusquet R; Maniey D; Bassez T; David JC
    Leuk Res; 1985; 9(7):859-67. PubMed ID: 3875005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of DNA ligase activity by histones and its reversal by poly(ADP-ribose).
    Ueda K; Ohashi Y; Hatakeyama K; Hayaishi O
    Princess Takamatsu Symp; 1983; 13():175-82. PubMed ID: 6654829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of a possible DNA ligase deficiency with T-cell acute leukemia.
    Rusquet RM; Feon SA; David JC
    Cancer Res; 1988 Jul; 48(14):4038-44. PubMed ID: 2454733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA unwinding and inhibition of T4 DNA ligase by anthracyclines.
    Montecucco A; Pedrali-Noy G; Spadari S; Zanolin E; Ciarrocchi G
    Nucleic Acids Res; 1988 May; 16(9):3907-18. PubMed ID: 3287337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of human DNA ligase by anthracyclines and distamycins.
    Ciarrocchi G; Fontana M; Spadari S; Montecucco A
    Anticancer Res; 1991; 11(3):1317-22. PubMed ID: 1888166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of thymocytes during human ontogeny: stage-specific DNA ligase in relation to terminal deoxynucleotidyl transferase, cell size and surface antigen.
    Rusquet R; Maniey D; Logeais Y; Merdrignac G; David JC
    Immunology; 1987 Aug; 61(4):509-14. PubMed ID: 3502118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Enzymes involved in the metabolism, replication and repair of DNA in acute leukemias (DNA ligases)].
    Lamballe F; Rusquet R; Maniey D; Bernard-Griffiths I; Le Prise PY; David JC
    Pathol Biol (Paris); 1987 Dec; 35(10):1293-9. PubMed ID: 2449648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imatinib (STI571) induces DNA damage in BCR/ABL-expressing leukemic cells but not in normal lymphocytes.
    Czechowska A; Poplawski T; Drzewoski J; Blasiak J
    Chem Biol Interact; 2005 Apr; 152(2-3):139-50. PubMed ID: 15840387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenothiazines suppress proliferation and induce apoptosis in cultured leukemic cells without any influence on the viability of normal lymphocytes. Phenothiazines and leukemia.
    Zhelev Z; Ohba H; Bakalova R; Hadjimitova V; Ishikawa M; Shinohara Y; Baba Y
    Cancer Chemother Pharmacol; 2004 Mar; 53(3):267-75. PubMed ID: 14663628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel target in DNA metabolism for cytotoxic drugs.
    Ciarrocchi G; Montecucco A; Pedrali-Noy G; Spadari S
    Biochem Pharmacol; 1988 May; 37(9):1803-4. PubMed ID: 2837241
    [No Abstract]   [Full Text] [Related]  

  • 14. Differentiation of thymocytes during chicken ontogeny: occurrence of a specific DNA ligase in relationship to cell size and surface antigens.
    David JC; Fedecka-Bruner B; Mishal Z; Vinson D; Rosenfeld C
    Eur J Immunol; 1981 Jul; 11(7):593-6. PubMed ID: 6974647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of DNA-binding drugs on T4 DNA ligase.
    Montecucco A; Pedrali-Noy G; Spadari S; Lestingi M; Ciarrocchi G
    Biochem J; 1990 Mar; 266(2):379-84. PubMed ID: 2156493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of DNA ligase activity by arsenite: a possible mechanism of its comutagenesis.
    Li JH; Rossman TG
    Mol Toxicol; 1989; 2(1):1-9. PubMed ID: 2615768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of discrimination between DNA ligases I and III by two classes of inhibitors, anthracyclines and distamycins.
    Montecucco A; Lestingi M; Rossignol JM; Elder RH; Ciarrocchi G
    Biochem Pharmacol; 1993 Apr; 45(7):1536-9. PubMed ID: 8471077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The primary in vitro anticancer activity of "half-mustard type" phenothiazines in NCI's revised anticancer screening paradigm.
    Wuonola MA; Palfreyman MG; Motohashi N; Kawase M; Gabay S; Gupta RR; Molnár J
    Anticancer Res; 1998; 18(1A):337-48. PubMed ID: 9568100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical utility of leukemia cell terminal transferase measurements.
    McCaffrey R; Lillquist A; Sallan S; Cohen E; Osband M
    Cancer Res; 1981 Nov; 41(11 Pt 2):4814-20. PubMed ID: 7028251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-Chloro-2'-deoxyadenosine (2CdA) biochemical aspects of antileukemic efficacy.
    Fabianowska-Majewska K; Wyczechowska D
    Acta Pol Pharm; 1996; 53(4):231-9. PubMed ID: 9415193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.