These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 398716)

  • 1. Regulation of N-acetylglucosamine uptake in yeast.
    Singh B; Datta A
    Biochim Biophys Acta; 1979 Oct; 557(1):248-58. PubMed ID: 398716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effect of glucose and adenosine 3',5'-monophosphate on the synthesis of inducible N-acetylglucosamine catabolic enzymes in yeast.
    Singh B; Guptaroy B; Hasan G; Datta A
    Biochim Biophys Acta; 1980 Oct; 632(3):345-53. PubMed ID: 6251914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of glucosamine-6-phosphate deaminase synthesis in yeast.
    Singh B; Datta A
    Biochim Biophys Acta; 1979 Feb; 583(1):28-35. PubMed ID: 369615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of N-acetylglucosamine-catabolic pathway in spheroplasts of Candida albicans.
    Singh B; Datta A
    Biochem J; 1979 Feb; 178(2):427-31. PubMed ID: 220965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inducible N-acetyglucosamine-binding protein in yeasts.
    Singh B; Biswas M; Datta A
    J Bacteriol; 1980 Oct; 144(1):1-6. PubMed ID: 6998941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose repression of the inducible catabolic pathway for N-acetylglucosamine in yeast.
    Singh BR; Datta A
    Biochem Biophys Res Commun; 1978 Sep; 84(1):58-64. PubMed ID: 215141
    [No Abstract]   [Full Text] [Related]  

  • 7. Evidence for a glucose effect on N-acetylglucosamine catabolism in Candida albicans.
    Niimi M; Kamiyama A; Tokunaga M; Nakayama H
    Can J Microbiol; 1987 Apr; 33(4):345-7. PubMed ID: 3036326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Candida albicans mutant impaired in the utilization of N-acetylglucosamine.
    Corner BE; Poulter RT; Shepherd MG; Sullivan PA
    J Gen Microbiol; 1986 Jan; 132(1):15-9. PubMed ID: 3519852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of N-acetylmannosamine catabolic pathway in yeast.
    Biswas M; Singh B; Datta A
    Biochim Biophys Acta; 1979 Jul; 585(4):535-42. PubMed ID: 223651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of N-acetyl-D-glucosamine catabolic enzymes and germinative response in Candida albicans.
    Natarajan K; Rai YP; Datta A
    Biochem Int; 1984 Dec; 9(6):735-44. PubMed ID: 6395867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation.
    Sullivan PA; Yin CY; Molloy C; Templeton MD; Shepherd MG
    Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of germ tube formation by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response.
    Mattia E; Carruba G; Angiolella L; Cassone A
    J Bacteriol; 1982 Nov; 152(2):555-62. PubMed ID: 6752114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans.
    Cassone A; Sullivan PA; Shepherd MG
    Microbiologica; 1985 Jan; 8(1):85-99. PubMed ID: 3883103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and incorporation of N-acetyl-D-glucosamine in Bacillus subtilis.
    Mobley HL; Doyle RJ; Streips UN; Langemeier SO
    J Bacteriol; 1982 Apr; 150(1):8-15. PubMed ID: 6174502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and characterization of a Saccharomyces cerevisiae strain able to grow on glucosamine as sole carbon and nitrogen source.
    Flores CL; Gancedo C
    Sci Rep; 2018 Nov; 8(1):16949. PubMed ID: 30446667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The requirements for bicarbonate and metabolism of the inducer during germ tube formation by Candida albicans.
    Pollack JH; Hashimoto T
    Can J Microbiol; 1988 Nov; 34(11):1183-8. PubMed ID: 2850098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gratuitous induction by N-acetylmannosamine of germ tube formation and enzymes for N-acetylglucosamine utilization in Candida albicans.
    Sullivan PA; Shepherd MG
    J Bacteriol; 1982 Sep; 151(3):1118-22. PubMed ID: 6286591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein synthesis and amino acid pool during yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans.
    Torosantucci A; Angiolella L; Filesi C; Cassone A
    J Gen Microbiol; 1984 Dec; 130(12):3285-93. PubMed ID: 6394717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans.
    Gopal P; Sullivan PA; Shepherd MG
    J Gen Microbiol; 1982 Oct; 128(10):2319-26. PubMed ID: 6296272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three Candida albicans potassium uptake systems differ in their ability to provide Saccharomyces cerevisiae trk1trk2 mutants with necessary potassium.
    Elicharová H; Hušeková B; Sychrová H
    FEMS Yeast Res; 2016 Jun; 16(4):. PubMed ID: 27189364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.