These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 398759)

  • 21. Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis.
    Sauter M; Moffatt B; Saechao MC; Hell R; Wirtz M
    Biochem J; 2013 Apr; 451(2):145-54. PubMed ID: 23535167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis of phytoquinones. Biosynthetic origins of the nuclei and satellite methyl groups of plastoquinone, tocopherols and tocopherolquinones in maize shoots, bean shoots and ivy leaves.
    Whistance GR; Threlfall DR
    Biochem J; 1968 Oct; 109(4):577-95. PubMed ID: 5683508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. S-Adenosylmethionine synthetase deficient mutants of Escherichia coli K-12 with impaired control of methionine biosynthesis.
    Greene RC; Su CH; Holloway CT
    Biochem Biophys Res Commun; 1970 Mar; 38(6):1120-6. PubMed ID: 4908544
    [No Abstract]   [Full Text] [Related]  

  • 24. Revisiting the attempts to fortify methionine content in plant seeds.
    Amir R; Cohen H; Hacham Y
    J Exp Bot; 2019 Aug; 70(16):4105-4114. PubMed ID: 30911752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of DeltarelA strains of Escherichia coli and Salmonella enterica serovar Typhimurium suggests a role for ppGpp in attenuation regulation of branched-chain amino acid biosynthesis.
    Tedin K; Norel F
    J Bacteriol; 2001 Nov; 183(21):6184-96. PubMed ID: 11591661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that glutamine transaminase and omega-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants.
    Ellens KW; Richardson LG; Frelin O; Collins J; Ribeiro CL; Hsieh YF; Mullen RT; Hanson AD
    Phytochemistry; 2015 May; 113():160-9. PubMed ID: 24837359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutants of Salmonella typhimurium responding to cysteine or methionine: their nature and possible role in the regulation of cysteine biosynthesis.
    Qureshi MA; Smith DA; Kingsman AJ
    J Gen Microbiol; 1975 Aug; 89(2):353-70. PubMed ID: 170364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new methionine locus, metR, that encodes a trans-acting protein required for activation of metE and metH in Escherichia coli and Salmonella typhimurium.
    Urbanowski ML; Stauffer LT; Plamann LS; Stauffer GV
    J Bacteriol; 1987 Apr; 169(4):1391-7. PubMed ID: 3549685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. THE ACCUMULATION OF O-SUCCINYLHOMOSERINE BY ESCHERICHIA COLI AND SALMONELLA TYPHIMURIUM.
    ROWBURY RJ
    J Gen Microbiol; 1964 Nov; 37():171-80. PubMed ID: 14247742
    [No Abstract]   [Full Text] [Related]  

  • 30. Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase.
    Brinch-Pedersen H; Galili G; Knudsen S; Holm PB
    Plant Mol Biol; 1996 Nov; 32(4):611-20. PubMed ID: 8980513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The utilization of carbon-1 compounds by plants. II. The formation and metabolism of formate by higher plant tissues.
    Cossins EA; Sinha SK
    Can J Biochem; 1965 Jun; 43(6):685-98. PubMed ID: 5839207
    [No Abstract]   [Full Text] [Related]  

  • 32. Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants.
    Jander G; Joshi V
    Mol Plant; 2010 Jan; 3(1):54-65. PubMed ID: 20019093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of repression of methionine biosynthesis in Escherichia coli. I. The role of methionine, s-adenosylmethionine, and methionyl-transfer ribonucleic acid in repression.
    Ahmed A
    Mol Gen Genet; 1973 Jul; 123(4):299-324. PubMed ID: 4580267
    [No Abstract]   [Full Text] [Related]  

  • 34. New method for study of peptide transport in bacteria.
    Cascieri T; Mallette MF
    Appl Microbiol; 1974 Mar; 27(3):457-63. PubMed ID: 4596381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of repression of methionine biosynthesis in Escherichia coli. II. The effect of metJ mutations on the free amino acid pool.
    Clandinin MT; Ahmed A
    Mol Gen Genet; 1973 Jul; 123(4):325-31. PubMed ID: 4580268
    [No Abstract]   [Full Text] [Related]  

  • 36. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants.
    Azevedo RA; Arruda P; Turner WL; Lea PJ
    Phytochemistry; 1997 Oct; 46(3):395-419. PubMed ID: 9332022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of the sulfur amino acids: cysteine and methionine.
    Wirtz M; Droux M
    Photosynth Res; 2005 Dec; 86(3):345-62. PubMed ID: 16307301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lysine metabolism in higher plants.
    Azevedo RA; Lea PJ
    Amino Acids; 2001; 20(3):261-79. PubMed ID: 11354603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of methionine and vitamin B-12 on the activities of methionine biosynthetic enzymes in metJ mutants of Escherichia coli K12.
    Greene RC; Williams RD; Kung HF; Spears C; Weissbach H
    Arch Biochem Biophys; 1973 Sep; 158(1):249-56. PubMed ID: 4580842
    [No Abstract]   [Full Text] [Related]  

  • 40. [Synthesis of methionine by microorganisms and its regulation].
    Dekhtiarenko TD
    Mikrobiol Zh; 1970; 32(5):660-5. PubMed ID: 4931526
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.