BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 3987692)

  • 1. FAD analogues as prosthetic groups of human glutathione reductase. Properties of the modified enzyme species and comparisons with the active site structure.
    Krauth-Siegel RL; Schirmer RH; Ghisla S
    Eur J Biochem; 1985 Apr; 148(2):335-44. PubMed ID: 3987692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FAD analogues as mechanistic and 'binding-domain' probes of spinach ferredoxin-NADP+ reductase.
    Zanetti G; Massey V; Curti B
    Eur J Biochem; 1983 Apr; 132(1):201-5. PubMed ID: 6840083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of rabbit liver glutathione reductase reconstituted with FAD analogs.
    Zanetti G; Beretta C; Malandra D
    Arch Biochem Biophys; 1986 Feb; 244(2):831-7. PubMed ID: 3947091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for direct interaction between cysteine 138 and the flavin in thioredoxin reductase. A study using flavin analogs.
    Prongay AJ; Williams CH
    J Biol Chem; 1990 Nov; 265(31):18968-75. PubMed ID: 2229055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural, spectroscopic and catalytic activity studies on glutathione reductase reconstituted with FAD analogues.
    Ermler U; Ghisla S; Massey V; Schulz GE
    Eur J Biochem; 1991 Jul; 199(1):133-8. PubMed ID: 2065668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G; Krishna TS; Williams CH; Kuriyan J
    J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site studies of DT-diaphorase employing artificial flavins.
    Tedeschi G; Chen S; Massey V
    J Biol Chem; 1995 Feb; 270(6):2512-6. PubMed ID: 7531691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the active centre of Rhodotorula gracilis D-amino acid oxidase and comparison with pig kidney enzyme.
    Pollegioni L; Ghisla S; Pilone MS
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):389-94. PubMed ID: 1356333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of the flavin adenine dinucleotide binding region in Escherichia coli pyruvate oxidase.
    Mather M; Schopfer LM; Massey V; Gennis RB
    J Biol Chem; 1982 Nov; 257(21):12887-92. PubMed ID: 6752143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen reactivity of p-hydroxybenzoate hydroxylase containing 1-deaza-FAD.
    Entsch B; Husain M; Ballou DP; Massey V; Walsh C
    J Biol Chem; 1980 Feb; 255(4):1420-9. PubMed ID: 6766449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of a covalent flavin linkage in lipoamide dehydrogenase. Reaction with 8-Cl-FAD.
    Moore EG; Cardemil E; Massey V
    J Biol Chem; 1978 Sep; 253(18):6413-22. PubMed ID: 681358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rate-limiting conformational change of the flavin in p-hydroxybenzoate hydroxylase is necessary for ligand exchange and catalysis: studies with 8-mercapto- and 8-hydroxy-flavins.
    Ortiz-Maldonado M; Ballou DP; Massey V
    Biochemistry; 2001 Jan; 40(4):1091-101. PubMed ID: 11170433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the spectral and redox properties and covalent flavinylation of the flavoprotein component of p-cresol methylhydroxylase reconstituted with FAD analogues.
    Efimov I; McIntire WS
    Biochemistry; 2004 Aug; 43(32):10532-46. PubMed ID: 15301551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathione reductase from yeast. Differential reactivity of the nascent thiols in two-electron reduced enzyme and properties of a monoalkylated derivative.
    Arscott LD; Thorpe C; Williams CH
    Biochemistry; 1981 Mar; 20(6):1513-20. PubMed ID: 7013796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavin conformational changes in the catalytic cycle of p-hydroxybenzoate hydroxylase substituted with 6-azido- and 6-aminoflavin adenine dinucleotide.
    Palfey BA; Ballou DP; Massey V
    Biochemistry; 1997 Dec; 36(50):15713-23. PubMed ID: 9398300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2'-fluoro-2'-deoxy-D-arabinoflavin: characterization of a novel flavin and its effects on the formation and stability of two-electron-reduced mercuric ion reductase.
    Miller SM
    Biochemistry; 1995 Oct; 34(40):13066-73. PubMed ID: 7548066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin.
    Picaud T; Desbois A
    Biochemistry; 2006 Dec; 45(51):15829-37. PubMed ID: 17176105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trp-676 facilitates nicotinamide coenzyme exchange in the reductive half-reaction of human cytochrome P450 reductase: properties of the soluble W676H and W676A mutant reductases.
    Gutierrez A; Doehr O; Paine M; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2000 Dec; 39(51):15990-9. PubMed ID: 11123926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state and laser flash induced photoreduction of yeast glutathione reductase by 5-deazariboflavin and by a viologen analogue: stabilization of flavin adenine dinucleotide semiquinone species by complexation.
    Navarro JA; Roncel M; Tollin G
    Biochemistry; 1990 Jun; 29(25):6102-7. PubMed ID: 2383572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.