These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 3987888)

  • 1. Structural interpretation of low-temperature heme-ligand recombination rates in myoglobin.
    Siebrand W; Somorjai RL; Wildman TA
    FEBS Lett; 1985 Apr; 183(2):191-4. PubMed ID: 3987888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic distal pocket affects NO-heme geminate recombination dynamics in dehaloperoxidase and H64V myoglobin.
    Franzen S; Jasaitis A; Belyea J; Brewer SH; Casey R; MacFarlane AW; Stanley RJ; Vos MH; Martin JL
    J Phys Chem B; 2006 Jul; 110(29):14483-93. PubMed ID: 16854160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing heme protein conformational equilibration rates with kinetic selection.
    Tian WD; Sage JT; Champion PM; Chien E; Sligar SG
    Biochemistry; 1996 Mar; 35(11):3487-502. PubMed ID: 8639499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heme protein dynamics revealed by geminate nitric oxide recombination in mutants of iron and cobalt myoglobin.
    Kholodenko Y; Gooding EA; Dou Y; Ikeda-Saito M; Hochstrasser RM
    Biochemistry; 1999 May; 38(18):5918-24. PubMed ID: 10231545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geminate carbon monoxide rebinding to a c-type haem.
    Silkstone G; Jasaitis A; Vos MH; Wilson MT
    Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of protein function by exogenous ligands in protein cavities: CO binding to a myoglobin cavity mutant containing unnatural proximal ligands.
    Decatur SM; DePillis GD; Boxer SG
    Biochemistry; 1996 Apr; 35(13):3925-32. PubMed ID: 8672423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual ligand discrimination by a myoglobin reconstituted with a hydrophobic domain-linked heme.
    Sato H; Watanabe M; Hisaeda Y; Hayashi T
    J Am Chem Soc; 2005 Jan; 127(1):56-7. PubMed ID: 15631446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations of ligand association and dissociation rates in the "open" and "closed" states of myoglobin.
    Tian WD; Sage JT; Champion PM
    J Mol Biol; 1993 Sep; 233(1):155-66. PubMed ID: 8377182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the intramolecular disulfide bond on ligand binding dynamics in myoglobin.
    Uchida T; Unno M; Ishimori K; Morishima I
    Biochemistry; 1997 Jan; 36(2):324-32. PubMed ID: 9003184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilizing bound O2 in myoglobin by valine68 (E11) to asparagine substitution.
    Krzywda S; Murshudov GN; Brzozowski AM; Jaskolski M; Scott EE; Klizas SA; Gibson QH; Olson JS; Wilkinson AJ
    Biochemistry; 1998 Nov; 37(45):15896-907. PubMed ID: 9843395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand binding and conformational motions in myoglobin.
    Ostermann A; Waschipky R; Parak FG; Nienhaus GU
    Nature; 2000 Mar; 404(6774):205-8. PubMed ID: 10724176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural dynamics of myoglobin: spectroscopic and structural characterization of ligand docking sites in myoglobin mutant L29W.
    Nienhaus K; Deng P; Kriegl JM; Nienhaus GU
    Biochemistry; 2003 Aug; 42(32):9633-46. PubMed ID: 12911305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial trajectory of carbon monoxide after photodissociation from myoglobin at cryogenic temperatures.
    Teng TY; Srajer V; Moffat K
    Biochemistry; 1997 Oct; 36(40):12087-100. PubMed ID: 9315847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inversion of axial coordination in myoglobin to create a "proximal" ligand binding pocket.
    Uno T; Sakamoto R; Tomisugi Y; Ishikawa Y; Wilkinson AJ
    Biochemistry; 2003 Sep; 42(34):10191-9. PubMed ID: 12939147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand binding and protein relaxation in heme proteins: a room temperature analysis of NO geminate recombination.
    Petrich JW; Lambry JC; Kuczera K; Karplus M; Poyart C; Martin JL
    Biochemistry; 1991 Apr; 30(16):3975-87. PubMed ID: 2018766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast measurements of geminate recombination of NO with site-specific mutants of human myoglobin.
    Petrich JW; Lambry JC; Balasubramanian S; Lambright DG; Boxer SG; Martin JL
    J Mol Biol; 1994 May; 238(3):437-44. PubMed ID: 8176734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations of photolysis and rebinding kinetics in myoglobin using proximal ligand replacements.
    Cao W; Ye X; Sjodin T; Christian JF; Demidov AA; Berezhna S; Wang W; Barrick D; Sage JT; Champion PM
    Biochemistry; 2004 Aug; 43(34):11109-17. PubMed ID: 15323570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin.
    LoBrutto R; Wei YH; Yoshida S; Van Camp HL; Scholes CP; King TE
    Biophys J; 1984 Feb; 45(2):473-9. PubMed ID: 6320917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trehalose prevents myoglobin collapse and preserves its internal mobility.
    Sastry GM; Agmon N
    Biochemistry; 1997 Jun; 36(23):7097-108. PubMed ID: 9188709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.