These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 3988415)
1. Effects of potassium + magnesium aspartate on muscle metabolism and force development during short intensive static exercise. de Haan A; van Doorn JE; Westra HG Int J Sports Med; 1985 Feb; 6(1):44-9. PubMed ID: 3988415 [TBL] [Abstract][Full Text] [Related]
2. Physical performance and muscle metabolism during beta-adrenergic blockade in man. Kaiser P Acta Physiol Scand Suppl; 1984; 536():1-53. PubMed ID: 6151777 [TBL] [Abstract][Full Text] [Related]
3. Absence of effect of potassium-magnesium aspartate on physiologic responses to prolonged work in aerobically trained men. Hagan RD; Upton SJ; Duncan JJ; Cummings JM; Gettman LR Int J Sports Med; 1982 Aug; 3(3):177-81. PubMed ID: 7138632 [TBL] [Abstract][Full Text] [Related]
4. The effects of oral administration of salts of aspartic acid on the metabolic response to prolonged exhausting exercise in man. Maughan RJ; Sadler DJ Int J Sports Med; 1983 May; 4(2):119-23. PubMed ID: 6874173 [TBL] [Abstract][Full Text] [Related]
5. Influence of caffeine on force and EMG in rested and fatigued muscle. Williams JH; Barnes WS; Gadberry WL Am J Phys Med; 1987 Aug; 66(4):169-83. PubMed ID: 3674221 [TBL] [Abstract][Full Text] [Related]
6. The effect of intensive interval training on the anaerobic power of the rat quadriceps muscle. Westra HG; de Haan A; van Doorn JE; de Haan EJ J Sports Sci; 1985; 3(2):139-50. PubMed ID: 4094024 [TBL] [Abstract][Full Text] [Related]
7. Effects of beta-adrenergic blockade on endurance and short-time performance in respect to individual muscle fiber composition. Kaiser P; Rössner S; Karlsson J Int J Sports Med; 1981 Feb; 2(1):37-42. PubMed ID: 6120902 [TBL] [Abstract][Full Text] [Related]
8. [Comparative study of the antiarrhythmic activity of L-, D-and DL-stereoisomers of potassium magnesium aspartate]. Spasov AA; Iezhitsa IN; Zhuravleva NV; Gurova NA; Sinolitskiĭ MK; Voronin SP Eksp Klin Farmakol; 2007; 70(1):17-21. PubMed ID: 17402586 [TBL] [Abstract][Full Text] [Related]
9. [Effect of malic acid salts on physical work capacity and its recovery after exhausting muscular activity]. Dunaev VV; Tishkin VS; Milonova NP; Belaĭ IM; Makarenko AN Farmakol Toksikol; 1988; 51(3):21-5. PubMed ID: 3410020 [TBL] [Abstract][Full Text] [Related]
10. Influence of chronic supplementation of arginine aspartate in endurance athletes on performance and substrate metabolism - a randomized, double-blind, placebo-controlled study. Abel T; Knechtle B; Perret C; Eser P; von Arx P; Knecht H Int J Sports Med; 2005 Jun; 26(5):344-9. PubMed ID: 15895316 [TBL] [Abstract][Full Text] [Related]
11. Metabolism of branched-chain amino acids and ammonia during exercise: clues from McArdle's disease. Wagenmakers AJ; Coakley JH; Edwards RH Int J Sports Med; 1990 May; 11 Suppl 2():S101-13. PubMed ID: 2193889 [TBL] [Abstract][Full Text] [Related]
12. Force development and metabolism in perfused skeletal muscle of euthyroid and hyperthyroid rats. Everts ME; van Hardeveld C; Ter Keurs HE; Kassenaar AA Horm Metab Res; 1983 Aug; 15(8):388-93. PubMed ID: 6618429 [TBL] [Abstract][Full Text] [Related]
13. Correlation of function and energy metabolism in rat ischemic skeletal muscle by 31P-NMR spectroscopy: effects of torbafylline. Koch H; Okyayuz-Baklouti I; Norris D; Kogler H; Leibfritz D J Med; 1993; 24(1):47-66. PubMed ID: 8501403 [TBL] [Abstract][Full Text] [Related]
15. Purine nucleotides and AMP deamination during maximal and endurance swimming exercise in heart and skeletal muscle of rats. Weicker H; Hageloch W; Luo J; Müller D; Werle E; Sehling KM Int J Sports Med; 1990 May; 11 Suppl 2():S68-77. PubMed ID: 2361782 [TBL] [Abstract][Full Text] [Related]
16. Beneficial effects of citrulline malate on skeletal muscle function in endotoxemic rat. Giannesini B; Izquierdo M; Le Fur Y; Cozzone PJ; Verleye M; Le Guern ME; Gillardin JM; Bendahan D Eur J Pharmacol; 2009 Jan; 602(1):143-7. PubMed ID: 19036344 [TBL] [Abstract][Full Text] [Related]
17. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage. McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892 [TBL] [Abstract][Full Text] [Related]
18. Role of Na,K pumps in restoring contractility following loss of cell membrane integrity in rat skeletal muscle. Clausen T; Gissel H Acta Physiol Scand; 2005 Mar; 183(3):263-71. PubMed ID: 15743386 [TBL] [Abstract][Full Text] [Related]
19. Anaerobic threshold: review of the concept and directions for future research. Brooks GA Med Sci Sports Exerc; 1985 Feb; 17(1):22-34. PubMed ID: 3884959 [TBL] [Abstract][Full Text] [Related]
20. Glucose transport into skeletal muscle. Influence of contractile activity, insulin, catecholamines and diabetes mellitus. Wallberg-Henriksson H Acta Physiol Scand Suppl; 1987; 564():1-80. PubMed ID: 2890259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]