These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 3988654)
1. Relationship of rumen fluid dilution rate to rumen fermentation and dietary characteristics of beef steers. Estell RE; Galyean ML J Anim Sci; 1985 Apr; 60(4):1061-71. PubMed ID: 3988654 [TBL] [Abstract][Full Text] [Related]
2. Effects of time at suboptimal pH on rumen fermentation in a dual-flow continuous culture system. Cerrato-Sánchez M; Calsamiglia S; Ferret A J Dairy Sci; 2007 Mar; 90(3):1486-92. PubMed ID: 17297122 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows. Morvay Y; Bannink A; France J; Kebreab E; Dijkstra J J Dairy Sci; 2011 Jun; 94(6):3063-80. PubMed ID: 21605776 [TBL] [Abstract][Full Text] [Related]
4. Effect of dietary protein and energy levels on rumen fermentation in Holstein steers. de Faria VP; Huber JT J Anim Sci; 1984 Feb; 58(2):452-9. PubMed ID: 6706877 [TBL] [Abstract][Full Text] [Related]
5. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system. Foskolos A; Siurana A; Rodriquez-Prado M; Ferret A; Bravo D; Calsamiglia S J Dairy Sci; 2015 Aug; 98(8):5482-91. PubMed ID: 26004834 [TBL] [Abstract][Full Text] [Related]
7. Effect of monensin inclusion on intake, digestion, and ruminal fermentation parameters by Bell NL; Anderson RC; Callaway TR; Franco MO; Sawyer JE; Wickersham TA J Anim Sci; 2017 Jun; 95(6):2736-2746. PubMed ID: 28727060 [TBL] [Abstract][Full Text] [Related]
8. Effects of supplemental protein percentage and feeding level on intake, ruminal fermentation, and digesta passage in beef steers fed prairie hay. Freeman AS; Galyean ML; Caton JS J Anim Sci; 1992 May; 70(5):1562-72. PubMed ID: 1326512 [TBL] [Abstract][Full Text] [Related]
9. Effect of calcium oxide inclusion in beef feedlot diets containing 60% dried distillers grains with solubles on ruminal fermentation, diet digestibility, performance, and carcass characteristics. Nuñez AJ; Felix TL; Lemenager RP; Schoonmaker JP J Anim Sci; 2014 Sep; 92(9):3954-65. PubMed ID: 24987065 [TBL] [Abstract][Full Text] [Related]
10. Effects of Static or Oscillating Dietary Crude Protein Levels on Fermentation Dynamics of Beef Cattle Diets Using a Dual-Flow Continuous Culture System. Amaral PM; Mariz LD; Benedeti PD; Silva LG; Paula EM; Monteiro HF; Shenkoru T; Santos SA; Poulson SR; Faciola AP PLoS One; 2016; 11(12):e0169170. PubMed ID: 28036405 [TBL] [Abstract][Full Text] [Related]
11. Effects of dietary protein levels and 2-methylbutyrate on ruminal fermentation, nutrient degradability, bacterial populations and urinary purine derivatives in Simmental steers. Wang C; Liu Q; Guo G; Huo WJ; Pei CX; Zhang SL; Yang WZ J Anim Physiol Anim Nutr (Berl); 2018 Jun; 102(3):611-619. PubMed ID: 29095532 [TBL] [Abstract][Full Text] [Related]
12. Effects of dietary fiber and feeding frequency on ruminal fermentation, digesta water-holding capacity, and fractional turnover of contents. Froetschel MA; Amos HE J Anim Sci; 1991 Mar; 69(3):1312-21. PubMed ID: 1648068 [TBL] [Abstract][Full Text] [Related]
13. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows. Storm AC; Kristensen NB; Hanigan MD J Dairy Sci; 2012 Jun; 95(6):2919-34. PubMed ID: 22612930 [TBL] [Abstract][Full Text] [Related]
14. Effects of dry matter intake restriction on diet digestion, energy partitioning, phosphorus retention, and ruminal fermentation by beef steers. Clark JH; Olson KC; Schmidt TB; Linville ML; Alkire DO; Meyer DL; Rentfrow GK; Carr CC; Berg EP J Anim Sci; 2007 Dec; 85(12):3383-90. PubMed ID: 17785599 [TBL] [Abstract][Full Text] [Related]
15. Ruminal fermentation and amino acid flow in Holstein steers fed whole cottonseed with elevated concentrations of free fatty acids in the oil. Sullivan HM; Bernard JK; Amos HE J Dairy Sci; 2005 Feb; 88(2):690-7. PubMed ID: 15653536 [TBL] [Abstract][Full Text] [Related]
16. Methane production and diurnal variation measured in dairy cows and predicted from fermentation pattern and nutrient or carbon flow. Brask M; Weisbjerg MR; Hellwing AL; Bannink A; Lund P Animal; 2015 Nov; 9(11):1795-806. PubMed ID: 26245140 [TBL] [Abstract][Full Text] [Related]
17. Effect of high-dose nano-selenium and selenium-yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep. Xun W; Shi L; Yue W; Zhang C; Ren Y; Liu Q Biol Trace Elem Res; 2012 Dec; 150(1-3):130-6. PubMed ID: 22692882 [TBL] [Abstract][Full Text] [Related]
18. Effect of protein supplementation on ruminal parameters and microbial community fingerprint of Nellore steers fed tropical forages. Bento CB; Azevedo AC; Gomes DI; Batista ED; Rufino LM; Detmann E; Mantovani HC Animal; 2016 Jan; 10(1):44-54. PubMed ID: 26260519 [TBL] [Abstract][Full Text] [Related]
19. Production of volatile fatty acids in the rumen and cecum-colon of steers as affected by forage:concentrate and forage physical form. Siciliano-Jones J; Murphy MR J Dairy Sci; 1989 Feb; 72(2):485-92. PubMed ID: 2703570 [TBL] [Abstract][Full Text] [Related]
20. Supplementation of dormant tallgrass-prairie forage: I. Influence of varying supplemental protein and(or) energy levels on forage utilization characteristics of beef steers in confinement. DelCurto T; Cochran RC; Harmon DL; Beharka AA; Jacques KA; Towne G; Vanzant ES J Anim Sci; 1990 Feb; 68(2):515-31. PubMed ID: 2312439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]