BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3988823)

  • 1. Regional flow-metabolism couple following middle cerebral artery occlusion in cats.
    Tanaka K; Greenberg JH; Gonatas NK; Reivich M
    J Cereb Blood Flow Metab; 1985 Jun; 5(2):241-52. PubMed ID: 3988823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local cerebral glucose utilization in chronic middle cerebral artery occlusion in the cat.
    Komatsumoto S; Greenberg JH; Hickey WF; Reivich M
    J Cereb Blood Flow Metab; 1989 Aug; 9(4):535-47. PubMed ID: 2738118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral glucose metabolism during the recovery period after ischemia--its relationship to NADH-fluorescence, blood flow, EcoG and histology.
    Tanaka K; Dora E; Greenberg JH; Reivich M
    Stroke; 1986; 17(5):994-1004. PubMed ID: 3764974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hyperglycemia on ischemic brain damage, local cerebral blood flow and ischemic cerebral edema.
    Yura S
    Hokkaido Igaku Zasshi; 1991 Jan; 66(1):1-15. PubMed ID: 2004735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Relationship between focal cerebral ischemia and cerebral water content (author's transl)].
    Basugi N; Matsui T; Asano T; Sano K
    No To Shinkei; 1982 Apr; 34(4):383-91. PubMed ID: 7093075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional alterations in glucose consumption and metabolite levels during postischemic recovery in cat brain.
    Tanaka K; Welsh FA; Greenberg JH; O'Flynn R; Harris VA; Reivich M
    J Cereb Blood Flow Metab; 1985 Dec; 5(4):502-11. PubMed ID: 3932373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nimodipine does not affect the flow-metabolism couple in permanent cerebral ischemia.
    Gomi S; Burnett MG; Karp A; Greenberg JH
    Exp Brain Res; 2004 Apr; 155(4):469-76. PubMed ID: 14752581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral blood flow, glucose utilization, regional glucose, and ATP content during the maturation period of delayed ischemic injury in gerbil brain.
    Mies G; Paschen W; Hossmann KA
    J Cereb Blood Flow Metab; 1990 Sep; 10(5):638-45. PubMed ID: 2384537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral blood flow and glucose metabolism of the ischemic rim in spontaneously hypertensive stroke-prone rats with occlusion of the middle cerebral artery.
    Kita H; Shima K; Tatsumi M; Chigasaki H
    J Cereb Blood Flow Metab; 1995 Mar; 15(2):235-41. PubMed ID: 7860657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the ganglioside GM1, on cerebral metabolism, microcirculation, recovery kinetics of ECoG and histology, during the recovery period following focal ischemia in cats.
    Tanaka K; Dora E; Urbanics R; Greenberg JH; Toffano G; Reivich M
    Stroke; 1986; 17(6):1170-8. PubMed ID: 3810717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute improvement in histological outcome by MK-801 following focal cerebral ischemia and reperfusion in the cat independent of blood flow changes.
    Dezsi L; Greenberg JH; Hamar J; Sladky J; Karp A; Reivich M
    J Cereb Blood Flow Metab; 1992 May; 12(3):390-9. PubMed ID: 1314841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient middle cerebral artery occlusion by intraluminal suture: I. Three-dimensional autoradiographic image-analysis of local cerebral glucose metabolism-blood flow interrelationships during ischemia and early recirculation.
    Belayev L; Zhao W; Busto R; Ginsberg MD
    J Cereb Blood Flow Metab; 1997 Dec; 17(12):1266-80. PubMed ID: 9397026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of microcirculatory, NAD/NADH, and electrocorticographic changes in cat brain cortex during ischemia and recirculation.
    Dora E; Tanaka K; Greenberg JH; Gonatas NH; Reivich M
    Ann Neurol; 1986 Jun; 19(6):536-44. PubMed ID: 3729309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reversibility of glucose utilization in focal cerebral ischemia].
    Kataoka K; Yamada K; Hayakawa T; Kato A; Ushio Y
    No To Shinkei; 1983 Aug; 35(8):765-70. PubMed ID: 6639801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The immunosuppressant drug FK506 ameliorates secondary mitochondrial dysfunction following transient focal cerebral ischemia in the rat.
    Nakai A; Kuroda S; Kristián T; Siesjö BK
    Neurobiol Dis; 1997; 4(3-4):288-300. PubMed ID: 9361306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional image analysis of brain glucose metabolism-blood flow uncoupling and its electrophysiological correlates in the acute ischemic penumbra following middle cerebral artery occlusion.
    Back T; Zhao W; Ginsberg MD
    J Cereb Blood Flow Metab; 1995 Jul; 15(4):566-77. PubMed ID: 7790406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology.
    Ginsberg MD; Graham DI; Busto R
    Ann Neurol; 1985 Oct; 18(4):470-81. PubMed ID: 4073840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia.
    Pulsinelli WA; Levy DE; Duffy TE
    Ann Neurol; 1982 May; 11(5):499-502. PubMed ID: 7103426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat.
    Mies G; Ishimaru S; Xie Y; Seo K; Hossmann KA
    J Cereb Blood Flow Metab; 1991 Sep; 11(5):753-61. PubMed ID: 1874807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ischemia and reperfusion on lambda of the lumped constant of the [14C]deoxyglucose technique.
    Greenberg JH; Hamar J; Welsh FA; Harris V; Reivich M
    J Cereb Blood Flow Metab; 1992 Jan; 12(1):70-7. PubMed ID: 1727144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.