These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3989103)

  • 41. Physiology of hearing.
    Eldredge DH; Miller JD
    Annu Rev Physiol; 1971; 33():281-310. PubMed ID: 4951051
    [No Abstract]   [Full Text] [Related]  

  • 42. Cochlear summating potential recorded from the external auditory meatus of normal humans. Amplitude-intensity functions and relationships to auditory nerve compound action potential.
    Chatrian GE; Wirch AL; Edwards KH; Lettich E; Snyder JM
    Electroencephalogr Clin Neurophysiol; 1984 Sep; 59(5):396-410. PubMed ID: 6205867
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Relationship of distortion product in cochlea with cochlear activity revealed by laser interferometry].
    Long X; Zhang Y; Lu J; Long C
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2015 Sep; 29(18):1644-7. PubMed ID: 26790268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [The effects of mono- and bipolar stimulations of the acoustic nerve by a pulse current].
    D'iakonova IN; Tikhomirov AM
    Fiziol Zh SSSR Im I M Sechenova; 1990 Oct; 76(10):1413-7. PubMed ID: 1966097
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state?
    Abel C; Wittekindt A; Kössl M
    J Neurophysiol; 2009 May; 101(5):2362-71. PubMed ID: 19279155
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Magnitude and phase-frequency response to single tones in the auditory nerve.
    Allen JB
    J Acoust Soc Am; 1983 Jun; 73(6):2071-92. PubMed ID: 6875093
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study.
    Knight RD; Kemp DT
    J Acoust Soc Am; 2000 Jan; 107(1):457-73. PubMed ID: 10641654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acoustic distortion in the ear canal. I. Cubic difference tones: effects of acute noise injury.
    Schmiedt RA
    J Acoust Soc Am; 1986 May; 79(5):1481-90. PubMed ID: 3711447
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission.
    Liberman MC; Puria S; Guinan JJ
    J Acoust Soc Am; 1996 Jun; 99(6):3572-84. PubMed ID: 8655789
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acoustically derived auditory nerve action potential evoked by electrical stimulation: an estimation of the waveform of single unit contribution.
    de Sauvage RC; Cazals Y; Erre JP; Aran JM
    J Acoust Soc Am; 1983 Feb; 73(2):616-27. PubMed ID: 6841801
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Electrical responses recorded from the round window of the cat cochlea].
    Bakaĭ EA; Chaĭka SP
    Neirofiziologiia; 1979; 11(2):151-7. PubMed ID: 440488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A biophysical model of cochlear processing: intensity dependence of pure tone responses.
    Shamma SA; Chadwick RS; Wilbur WJ; Morrish KA; Rinzel J
    J Acoust Soc Am; 1986 Jul; 80(1):133-45. PubMed ID: 3745659
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit. II: Differential physiological vulnerability.
    Whitehead ML; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1992 Nov; 92(5):2662-82. PubMed ID: 1479129
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Discharge suppression in the silent interval preceding the tone burst in pause-build units of the dorsal cochlear nucleus of the unanesthetized decerebrate cat.
    Parham K; Kim DO
    J Acoust Soc Am; 1993 Dec; 94(6):3227-31. PubMed ID: 8300957
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computing auditory fatigue of the whole nerve action potential.
    Gans DP
    J Acoust Soc Am; 1981 Sep; 70(3):712-4. PubMed ID: 7288034
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Variability of amplitude and area of the auditory nerve compound action potential.
    Brown M; McAnally KI; Clark GM
    Acta Otolaryngol; 1997 Nov; 117(6):836-40. PubMed ID: 9442823
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of reversible hypoxia on the compared time courses of endocochlear potential and 2f1-f2 distortion products.
    Rebillard G; Lavigne-Rebillard M
    Hear Res; 1992 Oct; 62(2):142-8. PubMed ID: 1429256
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recovering from long-term and short-term adaptation of the whole nerve action potential.
    Abbas PJ
    J Acoust Soc Am; 1984 May; 75(5):1541-7. PubMed ID: 6736416
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Some ECMR properties in relation to other signals from the auditory periphery.
    Anderson SD
    Hear Res; 1980 Jun; 2(3-4):273-96. PubMed ID: 7410233
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measurement of distortion product phase in the ear canal of the cat.
    Fahey PF; Allen JB
    J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2880-91. PubMed ID: 9373975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.